Skip to main content

A high-throughput seismic phase associator

Project description

PyPI - License GitHub Workflow Status Read the Docs PyPI Python 3.9 DOI

PyOcto is a high-throughput seismic phase associator. The best way to get started with PyOcto is through our interactive examples:

Examples
Basics Open In Colab
Velocity models Open In Colab
Interfaces Open In Colab

If you're looking for further guidance, for example, a guide on how to set the associator parameters, check out the PyOcto documentation.

Installation

The easiest way to install PyOcto is through pip:

pip install pyocto

There are prebuilt wheels available for Linux, Mac OS, and Windows. In case you want to use 1D velocity models, you will need to install the optional dependency pyrocko. pyrocko is available through the standard channels, such as pip or conda.

git clone https://github.com/yetinam/pyocto.git
cd pyocto
git submodule update --init
pip install .[test]

To verify your installation is working, use pytest tests/.

Warning: PyOcto uses POSIX threads for threading. As these are not available on Windows, the Windows version is single-threaded. Therefore, we do not recommend running larger computations on Windows.

References

If you're using PyOcto in your work, please cite:

Münchmeyer, J. (2024). PyOcto: A high-throughput seismic phase associator. Seismica. [Paper].

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyocto-0.1.7.tar.gz (1.2 MB view details)

Uploaded Source

Built Distributions

pyocto-0.1.7-pp310-pypy310_pp73-win_amd64.whl (125.8 kB view details)

Uploaded PyPy Windows x86-64

pyocto-0.1.7-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (165.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyocto-0.1.7-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (176.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pyocto-0.1.7-pp39-pypy39_pp73-win_amd64.whl (125.9 kB view details)

Uploaded PyPy Windows x86-64

pyocto-0.1.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (165.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyocto-0.1.7-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (176.3 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pyocto-0.1.7-cp312-cp312-win_arm64.whl (105.0 kB view details)

Uploaded CPython 3.12 Windows ARM64

pyocto-0.1.7-cp312-cp312-win_amd64.whl (126.9 kB view details)

Uploaded CPython 3.12 Windows x86-64

pyocto-0.1.7-cp312-cp312-win32.whl (103.8 kB view details)

Uploaded CPython 3.12 Windows x86

pyocto-0.1.7-cp312-cp312-musllinux_1_1_x86_64.whl (688.2 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pyocto-0.1.7-cp312-cp312-musllinux_1_1_i686.whl (750.9 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ i686

pyocto-0.1.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (166.1 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pyocto-0.1.7-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (177.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

pyocto-0.1.7-cp312-cp312-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl (251.4 kB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64 macOS 11.0+ universal2 (ARM64, x86-64)

pyocto-0.1.7-cp311-cp311-win_arm64.whl (107.7 kB view details)

Uploaded CPython 3.11 Windows ARM64

pyocto-0.1.7-cp311-cp311-win_amd64.whl (127.2 kB view details)

Uploaded CPython 3.11 Windows x86-64

pyocto-0.1.7-cp311-cp311-win32.whl (103.7 kB view details)

Uploaded CPython 3.11 Windows x86

pyocto-0.1.7-cp311-cp311-musllinux_1_1_x86_64.whl (689.2 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pyocto-0.1.7-cp311-cp311-musllinux_1_1_i686.whl (750.4 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

pyocto-0.1.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (167.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyocto-0.1.7-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (177.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

pyocto-0.1.7-cp311-cp311-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl (250.9 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64 macOS 11.0+ universal2 (ARM64, x86-64)

pyocto-0.1.7-cp310-cp310-win_arm64.whl (106.9 kB view details)

Uploaded CPython 3.10 Windows ARM64

pyocto-0.1.7-cp310-cp310-win_amd64.whl (126.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

pyocto-0.1.7-cp310-cp310-win32.whl (103.1 kB view details)

Uploaded CPython 3.10 Windows x86

pyocto-0.1.7-cp310-cp310-musllinux_1_1_x86_64.whl (688.1 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pyocto-0.1.7-cp310-cp310-musllinux_1_1_i686.whl (749.1 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

pyocto-0.1.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (165.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyocto-0.1.7-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (176.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

pyocto-0.1.7-cp310-cp310-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl (248.2 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64 macOS 11.0+ universal2 (ARM64, x86-64)

pyocto-0.1.7-cp39-cp39-win_arm64.whl (104.5 kB view details)

Uploaded CPython 3.9 Windows ARM64

pyocto-0.1.7-cp39-cp39-win_amd64.whl (126.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyocto-0.1.7-cp39-cp39-win32.whl (103.2 kB view details)

Uploaded CPython 3.9 Windows x86

pyocto-0.1.7-cp39-cp39-musllinux_1_1_x86_64.whl (688.3 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pyocto-0.1.7-cp39-cp39-musllinux_1_1_i686.whl (749.3 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

pyocto-0.1.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (165.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyocto-0.1.7-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (176.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

pyocto-0.1.7-cp39-cp39-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl (248.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64 macOS 11.0+ universal2 (ARM64, x86-64)

File details

Details for the file pyocto-0.1.7.tar.gz.

File metadata

  • Download URL: pyocto-0.1.7.tar.gz
  • Upload date:
  • Size: 1.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for pyocto-0.1.7.tar.gz
Algorithm Hash digest
SHA256 ee54983b185b7320cab52159293a4d78b095ca314dfa4bdbf38fe5f7e1642039
MD5 2e7dfaf809a1d48283c8d7dfdc6288dd
BLAKE2b-256 173d839589bb691e2f4ae7f6c2dc4d0d57791da9dcdde21481a8a31d94ce260b

See more details on using hashes here.

File details

Details for the file pyocto-0.1.7-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pyocto-0.1.7-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 d8eeac1d79072ed54b2d1c707b908c36c0d515de495633cd14d853cf7db2b9f4
MD5 d7c7a55b5fe56ef37c971c688be2f400
BLAKE2b-256 3da305503366128d322d58ad4ff94fdc7435cb1d37c84974906d10ea4006d182

See more details on using hashes here.

File details

Details for the file pyocto-0.1.7-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyocto-0.1.7-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8cabd4c703df8fbd335f8be62cbc8551adcd567816efda0e746947131789e8c3
MD5 8da956bfcea1e1783714ecc37a99cc78
BLAKE2b-256 4a2166db73c913eebdff8aa14d6b9665ee5193ab7990b3d099e45f71b10423b7

See more details on using hashes here.

File details

Details for the file pyocto-0.1.7-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyocto-0.1.7-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4133cd2c3e9417d763d64f91b984fb809e53fc0e4164aa5bc80c284ba6d3345c
MD5 e426bb20e0671b1a0d659ff0417d2a83
BLAKE2b-256 05c051129410324406e42d4b571d964dc656c3af02f9e7d41e7e01f9c2c67bda

See more details on using hashes here.

File details

Details for the file pyocto-0.1.7-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pyocto-0.1.7-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 5942f8b4bd6e5e7dfb03a32348b481a5c066aa8ac3dfc8a2293c7a68589bdf96
MD5 81afe58a777fd02dda830a3327f93384
BLAKE2b-256 b1ac08904c4c7c9188adc4136e48d66479f3d07ddba95e8ac39bed3121edfcb2

See more details on using hashes here.

File details

Details for the file pyocto-0.1.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyocto-0.1.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3ffb4bb83c17666b1dd3de4f878a0ae6e6d47b5b962a4fd18047d945c2001936
MD5 21afb3c1c7243db8cfd2b2ce31e2591c
BLAKE2b-256 1ab86648cc267888c86a4a6d96868497d4946e8ba0fe853ba8441b4282d2e346

See more details on using hashes here.

File details

Details for the file pyocto-0.1.7-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyocto-0.1.7-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 fcd0bd4afc24218ab7b9d61d0dd93f953de62ca9ac12fae9e7646905f1d66381
MD5 28ed1a386740cc9818c1a9f7b04fb3a6
BLAKE2b-256 fdec75c58ec13e4add6b8ce86c096e3084125af27ca469d1e22dc0ae9d3e50b1

See more details on using hashes here.

File details

Details for the file pyocto-0.1.7-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: pyocto-0.1.7-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 105.0 kB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for pyocto-0.1.7-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 b05bb3a865503ec0e7cfbe0931cf2ea5bc37f760843bf0270b288b8202750325
MD5 34c641f66a9458b2978083f07332b368
BLAKE2b-256 670773fd318b82c9e20efdd1dc5508b5e28bc9b00b2a8b9a4b8b1ed9a356868a

See more details on using hashes here.

File details

Details for the file pyocto-0.1.7-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pyocto-0.1.7-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 126.9 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for pyocto-0.1.7-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 a77fd1a75256d57dda91f4578a5a5b64375829ce93e185356f8a6998e3780e46
MD5 3983aa57df6f76a4eacbcf634fcba399
BLAKE2b-256 a2722c803e61af5b0a77e6350a434f27fc09c1e74f2c2e5c699847197e755833

See more details on using hashes here.

File details

Details for the file pyocto-0.1.7-cp312-cp312-win32.whl.

File metadata

  • Download URL: pyocto-0.1.7-cp312-cp312-win32.whl
  • Upload date:
  • Size: 103.8 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for pyocto-0.1.7-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 9b2c1b8e4718c1b1565faf5c45d0d0cc6a48d9ac69af908b7d97ba4b22c2c961
MD5 0d64430da1040d8dc3002a4213db44a8
BLAKE2b-256 00c7d961d5ad9eb9663d6e8049e8224cd79faedfc3224323e30c32ad938eb546

See more details on using hashes here.

File details

Details for the file pyocto-0.1.7-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyocto-0.1.7-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ce4cf8c06ceb660c8d336b54484dd62067481209bdf5706ebb8740d1b35a3516
MD5 a1b1aa855d40b2b5c03242016a41ca78
BLAKE2b-256 08d0763ca969f23665a9ae829d9882f2a6c8e075df581f7a8008c47849862de6

See more details on using hashes here.

File details

Details for the file pyocto-0.1.7-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyocto-0.1.7-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 568226d64309572331473d6b17b48fa8c954c79a0f24ccbbe07ad08d48b3b2af
MD5 9f35594a5daf8b999f12182b27fa513e
BLAKE2b-256 497c70b6e357dc58f6a053392a229afbd563cf87bcab4fe0da7d60e18c5d7340

See more details on using hashes here.

File details

Details for the file pyocto-0.1.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyocto-0.1.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 78e7ed624ded939424e2038351d19ba5b4ce5ca53357817fa6afaa37fe148906
MD5 6386c0c505760eedc0a6b9db2a66a9f1
BLAKE2b-256 4eb722d6fe41576e1cf448e11b04a8274bea64abe11dfea9f215e93bf8f7991f

See more details on using hashes here.

File details

Details for the file pyocto-0.1.7-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyocto-0.1.7-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c9884285b3b8775aba5ea1841aec5c871a26cfcde9d6b4de9c1a3c8871891325
MD5 c5cd73d3bed1105e9617b856d61f2e7a
BLAKE2b-256 4543ae3485e8f4619c5402987a7aae173cdea6a34b94a867bedc4181decdfd75

See more details on using hashes here.

File details

Details for the file pyocto-0.1.7-cp312-cp312-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for pyocto-0.1.7-cp312-cp312-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 38988c9b09792d0d41f4b26ded07e4049a4606d3986b33c62b9918bc2397cdcc
MD5 99fe7945e9c57e2a9f8ffb252f2d9dc9
BLAKE2b-256 ea4b27066c8c002aec8154217fe43bd599ecf49b8dffd1e2875994ec1f7c3ee5

See more details on using hashes here.

File details

Details for the file pyocto-0.1.7-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: pyocto-0.1.7-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 107.7 kB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for pyocto-0.1.7-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 ced95622860d9bec14a4249be018fbcf172932c882c2fff5ca12ef4aec63bc82
MD5 3b7a0adcdce7e81898378976717b1ead
BLAKE2b-256 cd6808e90bced232e147833412066f36cfc8ca2874abbe349fd4a26efc47300f

See more details on using hashes here.

File details

Details for the file pyocto-0.1.7-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyocto-0.1.7-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 127.2 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for pyocto-0.1.7-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e5c5359cb064b24a3aa24a553d54d73c7bbc78e8e5f8bca043f1eab19e8b421e
MD5 6b9a15fadfa69f731dd302229734c772
BLAKE2b-256 ea7ba42dbc75b5da1cdd99fb353daf4b12d069aad15ad1f3178f7661a378995d

See more details on using hashes here.

File details

Details for the file pyocto-0.1.7-cp311-cp311-win32.whl.

File metadata

  • Download URL: pyocto-0.1.7-cp311-cp311-win32.whl
  • Upload date:
  • Size: 103.7 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for pyocto-0.1.7-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 8230887b5d4aed0ea4f622cc6befbc002775d4f5041de3f12962e17e94481cf5
MD5 09c2c3d5468f491ed0cf087e54a38158
BLAKE2b-256 a3a58f7a3161ea397704856735f61ed310694beae2ff744f33b0a001ae92a507

See more details on using hashes here.

File details

Details for the file pyocto-0.1.7-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyocto-0.1.7-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6aff7ee001c53d04921955d183f8d6af2ae9849b43d7b9b8712c1fb0efc13caa
MD5 c3c7394f2d54c5f73100c9c0c220a9a3
BLAKE2b-256 fd67523899f04e7bba593f12dbe1a74a05d9a999a4cce774b923d47db919469a

See more details on using hashes here.

File details

Details for the file pyocto-0.1.7-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyocto-0.1.7-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 c328126ba9074df0f678c974fe957f20f1f2218a43ca7319203cb572ebd25a3b
MD5 d26935719ba3f94fb300b5e6d7562bd4
BLAKE2b-256 0fe3b93331d472a1d1b6dd7b1d1fd5e8b31400ddb2b22746b6c3eaa62fab44ed

See more details on using hashes here.

File details

Details for the file pyocto-0.1.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyocto-0.1.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2668161e878a38c9a11f81b2932e81c5a51891795836c8d60744eb05a6cb6b11
MD5 62db54550dd142a4f2859d13f514be65
BLAKE2b-256 831bacfd9425faece46434d12cbcf698b25a39993e966db0492031124adcb190

See more details on using hashes here.

File details

Details for the file pyocto-0.1.7-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyocto-0.1.7-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e56c3486d3176b056f26442eb78a93a6ce60e2d56e5d97c095d944d7cc3e1a25
MD5 d1377f5b01cc23eb1980b03c8431ac03
BLAKE2b-256 07dff393202cdf2bab8538d573fe9815131589cc7f743bd1e12186357f24db84

See more details on using hashes here.

File details

Details for the file pyocto-0.1.7-cp311-cp311-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for pyocto-0.1.7-cp311-cp311-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 4de8e44abe8f44c54ef4ad27008f2d572bd472299baacf9b237d9c815c20e2dc
MD5 84c26e2945e2c416c3dbefe9be101fb8
BLAKE2b-256 e72836a46fa883301f594aee85241fe0d300ee280d7a7576238506d4115456c0

See more details on using hashes here.

File details

Details for the file pyocto-0.1.7-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: pyocto-0.1.7-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 106.9 kB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for pyocto-0.1.7-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 dd1961f122caf7e589028f35dcf0c2896f3bd73f867e3361cb703bad514e46c2
MD5 1082202ed1bdfd03c3bd5b944fb7e52d
BLAKE2b-256 29c5544111e6e5448ecd3dcf9592747671841e49c899dd99f2864767b5b21041

See more details on using hashes here.

File details

Details for the file pyocto-0.1.7-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyocto-0.1.7-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 126.2 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for pyocto-0.1.7-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d54cc82c352b27d26ea5437ba30f816bb8a69024ac43bb0ed76fb3b260fb1131
MD5 5972cb557ce537c243390c7f424d4efc
BLAKE2b-256 23ba9d4f83ca618b997221f9933c39e237c16df8845137b65e77b51f73020352

See more details on using hashes here.

File details

Details for the file pyocto-0.1.7-cp310-cp310-win32.whl.

File metadata

  • Download URL: pyocto-0.1.7-cp310-cp310-win32.whl
  • Upload date:
  • Size: 103.1 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for pyocto-0.1.7-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 008efc493b14725c0f1d95e37a7882e644631734a76ecabbb581c59f46bcea88
MD5 4e57a711b5d60e3d7f5e3b15f1f85d09
BLAKE2b-256 93372eb9e0609fb495287542480f32eeef2e8a1799753475563a2f1c4d7f2bc9

See more details on using hashes here.

File details

Details for the file pyocto-0.1.7-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyocto-0.1.7-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4d205d0d3fcf009dac098d9d27158bf4e6a63f5289064182a9ea704fa0f41d04
MD5 f48e6b96622210b3323d969f149e681a
BLAKE2b-256 b57a2ba26540bcf8adb4d0f9234d5deec49f557eae9d4b20c86f5feaa8940909

See more details on using hashes here.

File details

Details for the file pyocto-0.1.7-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyocto-0.1.7-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 d8a28030d6afaec45adbbd02e767d9b8ee717a683ea7fb431751f311101ac282
MD5 f86079b4f54d3d5c8a4f1615f3411411
BLAKE2b-256 387dbcfae41f1630476aa8757e726d0534945b7da791765d1a9f43aaa2e8f59c

See more details on using hashes here.

File details

Details for the file pyocto-0.1.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyocto-0.1.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 51ff9d52e18fb01e0846b4129295056584edf5f7636d3e0f06b66d148b124d83
MD5 3078f55bda22e7e086f10d331eeeced8
BLAKE2b-256 2c7fa4b8bcb1d9395523292ae1d5f40b291eb383cda601d2944dc306e7768041

See more details on using hashes here.

File details

Details for the file pyocto-0.1.7-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyocto-0.1.7-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a41bf6e20c20bd4be19a953d3e45226e5ed5068e13e65387f4c420baeaf6a8a2
MD5 79f636b5a5069c1ecaed9d43db1b81b0
BLAKE2b-256 c8cd265b719b40eb5d6b89061acc9be14dfce6e9b11aae9823e3e1709641bdb8

See more details on using hashes here.

File details

Details for the file pyocto-0.1.7-cp310-cp310-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for pyocto-0.1.7-cp310-cp310-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 7ece0a74de04a0698cfc1f4907a060e0591f2f6f031cb848bcf0047afa71a1d1
MD5 68aded61783240c5294c1a6f36332a4d
BLAKE2b-256 f433e6edd43452dd0c74e5a866e167caa51040b771f1bc7126088a651c54f554

See more details on using hashes here.

File details

Details for the file pyocto-0.1.7-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: pyocto-0.1.7-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 104.5 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for pyocto-0.1.7-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 bcae691bd434fecf6d915fdbf0ed43b8951954cce6901cc4282e2bac657870c9
MD5 fa5bb74ca29dae2d925007eb083ba81c
BLAKE2b-256 4a70647f1e59651d237063c8a43a41a4149ab15d1072f9f945f64a0a6561b45d

See more details on using hashes here.

File details

Details for the file pyocto-0.1.7-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyocto-0.1.7-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 126.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for pyocto-0.1.7-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 89dbe2461e9f912f189f616ae9088cfa7684ba8e8dc2d906467a9b848e507f07
MD5 fa02340d1a76c49e92b35cf31b94f4a6
BLAKE2b-256 5934b34468a32b2ae12a586b58bd00eb3dbc1c63ddc1dfb382989d76ce9d6c25

See more details on using hashes here.

File details

Details for the file pyocto-0.1.7-cp39-cp39-win32.whl.

File metadata

  • Download URL: pyocto-0.1.7-cp39-cp39-win32.whl
  • Upload date:
  • Size: 103.2 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for pyocto-0.1.7-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 0358ea9f8fc22d2283a2282b5f1b91f42ef076b8c97dfc49d8b052953ac4a2d4
MD5 6e26dd59296773b7c5b0ee588d380e20
BLAKE2b-256 0ef4c9d78e3d4dc9d631e80f18b86175a122e030f97046fb299abc79b916634c

See more details on using hashes here.

File details

Details for the file pyocto-0.1.7-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyocto-0.1.7-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2cb346ec934147f7efba52bb84c7f05b4edc0c7d088ea4bc2624f5aa288e1c68
MD5 a7ac978266ff2b27fac6e37c534ae9a8
BLAKE2b-256 e65e3dfe81d05dd76d66b25f2b19002a288b4053c97e1decb6ac0ab41f81a6a3

See more details on using hashes here.

File details

Details for the file pyocto-0.1.7-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyocto-0.1.7-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 a53a2ea90c77da1cb9703792b0820b80da215f2ae551671043a23c4201cc5f2b
MD5 55b47579b00ab82e4e10b8a3caa0b553
BLAKE2b-256 7f3956b28e48d496d50fc23801cf02b7d15402584b608eb12c68c40739cefb4c

See more details on using hashes here.

File details

Details for the file pyocto-0.1.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyocto-0.1.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 41ad6fad17c179afd43e7accbb8172adcb00aa1b1495fc91cc015dce4c5d83b0
MD5 3fb10d4f9659c565162ed2dc86c0e9b4
BLAKE2b-256 9d050ffc1bbc2b7a69d3cbc6dde34147ac36ed669cf8cffd12f2a8b73c870a61

See more details on using hashes here.

File details

Details for the file pyocto-0.1.7-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyocto-0.1.7-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d2a334aa1a435b4fdee0a32323ad9a47a27b13ea5a5266a4dfb36f880a74baa8
MD5 d0b0af13a429fbdf1c0954648853df42
BLAKE2b-256 40c67f8a295b9c4fd55be3c03ff848f9c9fc2054f5d921772d85acd8abde9b65

See more details on using hashes here.

File details

Details for the file pyocto-0.1.7-cp39-cp39-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for pyocto-0.1.7-cp39-cp39-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 2407038d6ac844bd6ac99930c47c2d21657035e51a9b443e87d895ea756c7184
MD5 6cfaa333c71ca04a266db6aeb7052695
BLAKE2b-256 77f037ad57f89e80d9bec8a99c1b03e2d8d3166ee7c082537437a3ca5191fa0b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page