Skip to main content

Python binding for odeint from boost.

Project description

Build status PyPI version License coverage https://zenodo.org/badge/41257136.svg

pyodeint provides a Python binding to odeint. Currently, the following steppers are exposed:

  • rosenbrock4: 4th order Rosenbrock (implicit multistep) stepper

  • dopri5: 5th order DOPRI5 (explicit runge-kutta)

  • bs: Bulirsch-Stoer stepper (modified midpoint rule).

The Rosenbrock4 stepper requires that the user provides a routine for calculating the Jacobian.

Documentation

Autogenerated API documentation for latest stable release is found here: https://bjodah.github.io/pyodeint/latest (and the development version for the current master branch are found here: http://hera.physchem.kth.se/~pyodeint/branches/master/html).

Installation

Simplest way to install is to use the conda package manager:

$ conda install -c bjodah pyodeint pytest
$ python -m pytest --pyargs pyodeint

tests should pass.

Binary distribution is available here: https://anaconda.org/bjodah/pyodeint

Source distribution is available here: https://pypi.python.org/pypi/pyodeint

here is an example of how to build from source:

$ CPLUS_INCLUDE_PATH=~/Downloads/boost_1_63_0 python3 setup.py build_ext -i

Examples

The classic van der Pol oscillator (see examples/van_der_pol.py)

>>> from pyodeint import integrate_adaptive  # also: integrate_predefined
>>> mu = 1.0
>>> def f(t, y, dydt):
...     dydt[0] = y[1]
...     dydt[1] = -y[0] + mu*y[1]*(1 - y[0]**2)
...
>>> def j(t, y, Jmat, dfdt, fy=None):
...     Jmat[0, 0] = 0
...     Jmat[0, 1] = 1
...     Jmat[1, 0] = -1 -mu*2*y[1]*y[0]
...     Jmat[1, 1] = mu*(1 - y[0]**2)
...     dfdt[0] = 0
...     dfdt[1] = 0
...
>>> y0 = [1, 0]; tend=10.0; dt0=1e-8; t0=0.0; atol=1e-8; rtol=1e-8
>>> tout, yout, info = integrate_adaptive(f, j, y0, t0, tend, dt0, atol, rtol,
...                                       method='rosenbrock4', nsteps=1000)
>>> import matplotlib.pyplot as plt
>>> series = plt.plot(tout, yout)
>>> plt.show()  # doctest: +SKIP
https://raw.githubusercontent.com/bjodah/pyodeint/master/examples/van_der_pol.png

For more examples see examples/, and rendered jupyter notebooks here: http://hera.physchem.kth.se/~pyodeint/branches/master/examples

See also

pyodesys for how to automatically generate the jacobian callback function (and easily swtich to other solvers).

License

The source code is Open Source and is released under the very permissive “simplified (2-clause) BSD license”. See LICENSE for further details. Contributors are welcome to suggest improvements at https://github.com/bjodah/pyodeint

Author

Björn I. Dahlgren, contact:

  • gmail address: bjodah

  • kth.se address: bda

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyodeint-0.8.3.tar.gz (79.5 kB view details)

Uploaded Source

File details

Details for the file pyodeint-0.8.3.tar.gz.

File metadata

  • Download URL: pyodeint-0.8.3.tar.gz
  • Upload date:
  • Size: 79.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pyodeint-0.8.3.tar.gz
Algorithm Hash digest
SHA256 7af20e5fe73ab5083eb77b9141b2a71a578b8e6634cb9268be88cb62b4ea4024
MD5 f3229c20b633563d617288a381c8dc8a
BLAKE2b-256 2844e17220708ec5bffee1560bb636683adcc93aabc42b825597430ff9483e33

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page