Skip to main content

Straightforward numerical integration of ODE systems from SymPy.

Project description

pyodesys
========

.. image:: http://hera.physchem.kth.se:9090/api/badges/bjodah/pyodesys/status.svg
:target: http://hera.physchem.kth.se:9090/bjodah/pyodesys
:alt: Build status
.. image:: https://img.shields.io/pypi/v/pyodesys.svg
:target: https://pypi.python.org/pypi/pyodesys
:alt: PyPI version
.. image:: https://img.shields.io/badge/python-2.7,3.4,3.5-blue.svg
:target: https://www.python.org/
:alt: Python version
.. image:: https://img.shields.io/pypi/l/pyodesys.svg
:target: https://github.com/bjodah/pyodesys/blob/master/LICENSE
:alt: License
.. image:: http://img.shields.io/badge/benchmarked%20by-asv-green.svg?style=flat
:target: http://hera.physchem.kth.se/~pyodesys/benchmarks
:alt: airspeedvelocity
.. image:: http://hera.physchem.kth.se/~pyodesys/branches/master/htmlcov/coverage.svg
:target: http://hera.physchem.kth.se/~pyodesys/branches/master/htmlcov
:alt: coverage

`pyodesys <https://github.com/bjodah/pyodesys>`_ provides a straightforward way
of numerically integrating systems of ordinary differential equations. It unifies
the interface of several libraries. It also provides a convenience class for
representing and integrating ODE systems defined by `SymPy <http://www.sympy.org>`_
expressions.

The numerical integration is perfomed using eiher:

- `scipy.integrate.ode <http://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html>`_
- `pygslodeiv2 <https://github.com/bjodah/pygslodeiv2>`_
- `pyodeint <https://github.com/bjodah/pyodeint>`_
- `pycvodes <https://github.com/bjodah/pycvodes>`_


Note that implicit steppers which require a user supplied
callback for calculating the jacobian is provided automatically by pyodesys.

Documentation
-------------
Autogenerated API documentation for latest stable release is found here:
`<https://pythonhosted.org/pyodesys>`_
(and development docs for the current master branch are found here:
`<http://hera.physchem.kth.se/~pyodesys/branches/master/html>`_).


Installation
------------
Simplest way to install pyodesys and its (optional) dependencies is to use the `conda package manager <http://conda.pydata.org/docs/>`_:

::

$ conda install -c bjodah pyodesys pytest
$ python -m pytest --pyargs pyodesys

alternatively you may also use `pip`:

::

$ python -m pip install --user pyodesys[all]

see `setup.py`_ for optional requirements.

Source distribution is available here:
`<https://pypi.python.org/pypi/pyodesys>`_

Example
-------
The classic van der Pol oscillator (see `examples/van_der_pol.py <examples/van_der_pol.py>`_)

.. code:: python

>>> from pyodesys.symbolic import SymbolicSys
>>> def f(t, y, p):
... return [y[1], -y[0] + p[0]*y[1]*(1 - y[0]**2)]
...
>>> odesys = SymbolicSys.from_callback(f, 2, 1)
>>> xout, yout, info = odesys.integrate(10, [1, 0], [1], integrator='odeint')
>>> _ = odesys.plot_result()
>>> import matplotlib.pyplot as plt; plt.show() # doctest: +SKIP

.. image:: https://raw.githubusercontent.com/bjodah/pyodesys/master/examples/van_der_pol.png

for more examples, see `examples/ <https://github.com/bjodah/pyodesys/tree/master/examples>`_, and rendered jupyter notebooks here:
`<http://hera.physchem.kth.se/~pyodesys/branches/master/examples>`_

License
-------
The source code is Open Source and is released under the simplified 2-clause BSD license. See `LICENSE <LICENSE>`_ for further details.
Contributors are welcome to suggest improvements at https://github.com/bjodah/pyodesys

Author
------
Björn I. Dahlgren, contact:

- gmail address: bjodah
- kth.se address: bda

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyodesys-0.5.3.tar.gz (27.0 kB view details)

Uploaded Source

File details

Details for the file pyodesys-0.5.3.tar.gz.

File metadata

  • Download URL: pyodesys-0.5.3.tar.gz
  • Upload date:
  • Size: 27.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pyodesys-0.5.3.tar.gz
Algorithm Hash digest
SHA256 50c8e3a85eed0dd191fd5b1fb514175f12387ea9f81a4c5b5d0642b01cd700d1
MD5 6d6218f918558bd31e272a10964042a9
BLAKE2b-256 3643c0217177b9600acfe7746266cac9768c7f5598440b9dac8ffb23376c6196

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page