A PyTorch implementation of the YOLO v3 object detection algorithm
Project description
A PyTorch implementation of a YOLO v3 Object Detector
YOLOv3のPyTorch実装版です。
ayooshkathuria/pytorch-yolo-v3の実装を活用させていただいています。
導入方法
pip install pyolov3
使い方
- Webカメラを使ったサンプルコード
import cv2
from pyolov3 import get_detector
yolo = get_detector("coco", 0.5) # 使用したい学習済みモデルとConfidenceの閾値を設定
cap = cv2.VideoCapture(0)
while True:
ret, frame = cap.read()
detimg, result = yolo.detect(frame)
print(result)
cv2.imshow("test", detimg)
key = cv2.waitKey(1)
if key == ord("q"):
break
cap.release()
cv2.destroyAllWindows()
使用できる学習済みモデル
現状は以下のモデルを指定できます。
- MS COCO
- 80クラス検出モデル
Detector("coco", confidence)
と指定
- Open Images Dataset
- 600クラス検出モデル
Detector("openimages", confidence)
と指定
- WIDER FACE
- 顔検出モデル
Detector("widerface", confidence)
と指定
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pyolov3-0.1.2.tar.gz
(18.0 kB
view details)
Built Distribution
pyolov3-0.1.2-py3-none-any.whl
(19.8 kB
view details)
File details
Details for the file pyolov3-0.1.2.tar.gz
.
File metadata
- Download URL: pyolov3-0.1.2.tar.gz
- Upload date:
- Size: 18.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.0.8 CPython/3.7.6 Linux/5.3.0-53-generic
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f29caaba058e6116d6a05a996e24369db3b77e85a5033ab67f1ccc347bd89cef |
|
MD5 | e89af65b32735a8e0f087accad484a08 |
|
BLAKE2b-256 | 8da809fcd7b25ad12bd69c2ae45abf8f8e72846e59f7ea9bfa75819929d0473c |
File details
Details for the file pyolov3-0.1.2-py3-none-any.whl
.
File metadata
- Download URL: pyolov3-0.1.2-py3-none-any.whl
- Upload date:
- Size: 19.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.0.8 CPython/3.7.6 Linux/5.3.0-53-generic
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fc184bc99bab78c6c8a24b15a27b42cfb419a011e7b96079c27430d697604b05 |
|
MD5 | 7705e8935117170f502d7062cad5d2a7 |
|
BLAKE2b-256 | 465befddaed401cc8305d13126812e2e8f0226a83a59b5f77a985a977827bbbb |