Skip to main content

A PyTorch implementation of the YOLO v3 object detection algorithm

Project description

A PyTorch implementation of a YOLO v3 Object Detector

YOLOv3のPyTorch実装版です。
ayooshkathuria/pytorch-yolo-v3の実装を活用させていただいています。

導入方法

pip install pyolov3

使い方

  • Webカメラを使ったサンプルコード
import cv2

from pyolov3 import get_detector

yolo = get_detector("coco", 0.5) # 使用したい学習済みモデルとConfidenceの閾値を設定
cap = cv2.VideoCapture(0)

while True:
    ret, frame = cap.read()

    detimg, result = yolo.detect(frame)
    print(result)

    cv2.imshow("test", detimg)

    key = cv2.waitKey(1)
    if key == ord("q"):
        break

cap.release()
cv2.destroyAllWindows()

使用できる学習済みモデル

現状は以下のモデルを指定できます。

  • MS COCO
    • 80クラス検出モデル
    • Detector("coco", confidence)と指定
  • Open Images Dataset
    • 600クラス検出モデル
    • Detector("openimages", confidence)と指定
  • WIDER FACE
    • 顔検出モデル
    • Detector("widerface", confidence)と指定

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyolov3-0.1.2.tar.gz (18.0 kB view details)

Uploaded Source

Built Distribution

pyolov3-0.1.2-py3-none-any.whl (19.8 kB view details)

Uploaded Python 3

File details

Details for the file pyolov3-0.1.2.tar.gz.

File metadata

  • Download URL: pyolov3-0.1.2.tar.gz
  • Upload date:
  • Size: 18.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.8 CPython/3.7.6 Linux/5.3.0-53-generic

File hashes

Hashes for pyolov3-0.1.2.tar.gz
Algorithm Hash digest
SHA256 f29caaba058e6116d6a05a996e24369db3b77e85a5033ab67f1ccc347bd89cef
MD5 e89af65b32735a8e0f087accad484a08
BLAKE2b-256 8da809fcd7b25ad12bd69c2ae45abf8f8e72846e59f7ea9bfa75819929d0473c

See more details on using hashes here.

File details

Details for the file pyolov3-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: pyolov3-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 19.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.8 CPython/3.7.6 Linux/5.3.0-53-generic

File hashes

Hashes for pyolov3-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 fc184bc99bab78c6c8a24b15a27b42cfb419a011e7b96079c27430d697604b05
MD5 7705e8935117170f502d7062cad5d2a7
BLAKE2b-256 465befddaed401cc8305d13126812e2e8f0226a83a59b5f77a985a977827bbbb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page