A PyTorch implementation of the YOLO v3 object detection algorithm
Project description
A PyTorch implementation of a YOLO v3 Object Detector
YOLOv3のPyTorch実装版です。
ayooshkathuria/pytorch-yolo-v3の実装を活用させていただいています。
導入方法
pip install pyolov3
使い方
- Webカメラを使ったサンプルコード
import cv2
from pyolov3 import get_detector
yolo = get_detector("coco", 0.5) # 使用したい学習済みモデルとConfidenceの閾値を設定
cap = cv2.VideoCapture(0)
while True:
ret, frame = cap.read()
detimg, result = yolo.detect(frame)
print(result)
cv2.imshow("test", detimg)
key = cv2.waitKey(1)
if key == ord("q"):
break
cap.release()
cv2.destroyAllWindows()
使用できる学習済みモデル
現状は以下のモデルを指定できます。
- MS COCO
- 80クラス検出モデル
Detector("coco", confidence)
と指定
- Open Images Dataset
- 600クラス検出モデル
Detector("openimages", confidence)
と指定
- WIDER FACE
- 顔検出モデル
Detector("widerface", confidence)
と指定
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pyolov3-0.1.0.tar.gz
(18.2 kB
view details)
Built Distribution
pyolov3-0.1.0-py3-none-any.whl
(20.3 kB
view details)
File details
Details for the file pyolov3-0.1.0.tar.gz
.
File metadata
- Download URL: pyolov3-0.1.0.tar.gz
- Upload date:
- Size: 18.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.0.8 CPython/3.7.6 Linux/5.3.0-53-generic
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bff375c2278fea8e5bd44f7606339e1b6153ef57e7ccb80f476b2c6abe6a0c3f |
|
MD5 | cbc03c6c71d7f46c91fe2d0023e001c9 |
|
BLAKE2b-256 | 4c5d9ce7bffb7634e7567fd391a98ea2e32b8cdde2707738087fa2ec7dfdcf2a |
File details
Details for the file pyolov3-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: pyolov3-0.1.0-py3-none-any.whl
- Upload date:
- Size: 20.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.0.8 CPython/3.7.6 Linux/5.3.0-53-generic
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | aca78724243b1e682879d7ba3de5a9980f189c93a0f9794f611b13d4b594b643 |
|
MD5 | d052ae2ab8797767180056f91edf7cdc |
|
BLAKE2b-256 | b8ffc3507b67d10f61cf8ad377bd1e893cc1e123fec5364f1e6974e059f4b1d5 |