Skip to main content

A PyTorch implementation of the YOLO v3 object detection algorithm

Project description

A PyTorch implementation of a YOLO v3 Object Detector

YOLOv3のPyTorch実装版です。
ayooshkathuria/pytorch-yolo-v3の実装を活用させていただいています。

導入方法

pip install pyolov3

使い方

  • Webカメラを使ったサンプルコード
import cv2

from pyolov3 import get_detector

yolo = get_detector("coco", 0.5) # 使用したい学習済みモデルとConfidenceの閾値を設定
cap = cv2.VideoCapture(0)

while True:
    ret, frame = cap.read()

    detimg, result = yolo.detect(frame)
    print(result)

    cv2.imshow("test", detimg)

    key = cv2.waitKey(1)
    if key == ord("q"):
        break

cap.release()
cv2.destroyAllWindows()

使用できる学習済みモデル

現状は以下のモデルを指定できます。

  • MS COCO
    • 80クラス検出モデル
    • Detector("coco", confidence)と指定
  • Open Images Dataset
    • 600クラス検出モデル
    • Detector("openimages", confidence)と指定
  • WIDER FACE
    • 顔検出モデル
    • Detector("widerface", confidence)と指定

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyolov3-0.1.0.tar.gz (18.2 kB view details)

Uploaded Source

Built Distribution

pyolov3-0.1.0-py3-none-any.whl (20.3 kB view details)

Uploaded Python 3

File details

Details for the file pyolov3-0.1.0.tar.gz.

File metadata

  • Download URL: pyolov3-0.1.0.tar.gz
  • Upload date:
  • Size: 18.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.8 CPython/3.7.6 Linux/5.3.0-53-generic

File hashes

Hashes for pyolov3-0.1.0.tar.gz
Algorithm Hash digest
SHA256 bff375c2278fea8e5bd44f7606339e1b6153ef57e7ccb80f476b2c6abe6a0c3f
MD5 cbc03c6c71d7f46c91fe2d0023e001c9
BLAKE2b-256 4c5d9ce7bffb7634e7567fd391a98ea2e32b8cdde2707738087fa2ec7dfdcf2a

See more details on using hashes here.

File details

Details for the file pyolov3-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: pyolov3-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 20.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.8 CPython/3.7.6 Linux/5.3.0-53-generic

File hashes

Hashes for pyolov3-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 aca78724243b1e682879d7ba3de5a9980f189c93a0f9794f611b13d4b594b643
MD5 d052ae2ab8797767180056f91edf7cdc
BLAKE2b-256 b8ffc3507b67d10f61cf8ad377bd1e893cc1e123fec5364f1e6974e059f4b1d5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page