Skip to main content

A PyTorch implementation of the YOLO v3 object detection algorithm

Project description

A PyTorch implementation of a YOLO v3 Object Detector

YOLOv3のPyTorch実装版です。
ayooshkathuria/pytorch-yolo-v3の実装を活用させていただいています。

導入方法

pip install pyolov3

使い方

  • Webカメラを使ったサンプルコード
import cv2

from pyolov3 import get_detector

yolo = get_detector("coco", 0.5) # 使用したい学習済みモデルとConfidenceの閾値を設定
cap = cv2.VideoCapture(0)

while True:
    ret, frame = cap.read()

    detimg, result = yolo.detect(frame)
    print(result)

    cv2.imshow("test", detimg)

    key = cv2.waitKey(1)
    if key == ord("q"):
        break

cap.release()
cv2.destroyAllWindows()

使用できる学習済みモデル

現状は以下のモデルを指定できます。

  • MS COCO
    • 80クラス検出モデル
    • Detector("coco", confidence)と指定
  • Open Images Dataset
    • 600クラス検出モデル
    • Detector("openimages", confidence)と指定
  • WIDER FACE
    • 顔検出モデル
    • Detector("widerface", confidence)と指定

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyolov3-0.1.1.tar.gz (18.0 kB view details)

Uploaded Source

Built Distribution

pyolov3-0.1.1-py3-none-any.whl (19.8 kB view details)

Uploaded Python 3

File details

Details for the file pyolov3-0.1.1.tar.gz.

File metadata

  • Download URL: pyolov3-0.1.1.tar.gz
  • Upload date:
  • Size: 18.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.8 CPython/3.7.6 Linux/5.3.0-53-generic

File hashes

Hashes for pyolov3-0.1.1.tar.gz
Algorithm Hash digest
SHA256 f1244d1a1df92fc163e398e6084734cd817f9dfd32abea9991ad9d24e8c80b42
MD5 f4928da7ef06bb0b717f4a6d478a23fb
BLAKE2b-256 8d72593d9fecaf22b0c3db1ea7dd892539a43b7482250a9961c5c0b8ed68a3f9

See more details on using hashes here.

File details

Details for the file pyolov3-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: pyolov3-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 19.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.8 CPython/3.7.6 Linux/5.3.0-53-generic

File hashes

Hashes for pyolov3-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 0ca1c5e42193d6585947ffe7d3c7169232f240947d0948a30784bb9bbd3b5033
MD5 0b343e205cc341e8f00db110d8602315
BLAKE2b-256 186b2711264a5613cc2f66fdc89967affbc5e15b187e1b3966b34e05c15c8cc7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page