Skip to main content

No project description provided

Project description

PyPI version Build Status Binder

Documentation

https://sys-bio.github.io/libOmexMeta

libOmexMeta

LibOmexMeta is a library aimed at providing developer-level support for reading, writing, editing and managing semantic annotations for biosimulation models. The COMBINE modeling community has developed consensus around how best to annotate models and how to package these models into archives (OMEX files) that include the modeling source code, the annotations, files that describe parameters and settings needed for simulations (in a SEDML file), and potentially the data used for these modeling efforts. This consensus was initially described in the publication "Harmonizing semantic annotations for computational models in biology" (Briefings in Bioinformatics, 2018).

The goal of semantic annotations are to make explicit the biology that underlies the semantics of biosimulation models. By using standard knowledge resources about biology and biological processes (such as CheBI, Uniprot, and ontologies of anatomy), we can make the models more understandable, reusable and reproducible. More information can be found at the OMEX Metadata Specification web page.

LibOmexMeta is a C++ library with a C interface that is used to build a Python front end (pyomexmeta). LibOmexMeta uses RDF as a framework for representing these annotations. At the core of libOmexMeta are the Redland libraries: - raptor2 for parsing RDF syntax into RDF graphs and serializing the output - rasqal for querying RDF graphs - librdf as a front end to raptor2 and rasqal and for triple stores.

Live demonstration

An interactive demonstration of pyomexmeta via Jupyter notebook is available via the launch binder badge above or by following this direct link. When you get to the binder site, select the file called "notebook.ipynb" to start the demo. Remember that notebooks are made of cells containing code. To execute code in a particular cell, select the cell and then pick the run button in the tool bar. The source for this live demonstration is available here: https://github.com/sys-bio/pyomexmeta-binder-notebook.

Features

Parsers

  • rdfxml, ntriples, turtle, trig, rss-tag-soup, grddl, guess, rdfa, nquads, guess

Serializers

  • ntriples, turtle, rdfxml-xmp, rdfxml-abbrev, rdfxml, rss-1.0, atom, dot, json-triples, json, nquads, html

Querying

  • Languages
  • Query result formats:
    • xml, json, table, csv, mkr, tsv, html, turtle, rdfxml,

Storages modules

  • hashes, memory, file, mysql, sqlite, uri, tstore (may be supported on request), postgresql (supported but not tested), virtuoso (may be supported on request),

Platform

  • Windows
  • Linux Ubuntu 18.04
  • ManyLinux 2014
  • MacOs

Installation

Python

Use pip.

$ pip install pyomexmeta
# verify its worked
$ ipython -c "import pyomexmeta"

Python 3 only - if you're not using Python 3, I recommend you upgrade.

Docker

You can get a docker image using

$ docker pull ciaranwelsh/libomexmeta

This is an Ubuntu 18.04 based container that has libOmexMeta prebuilt and installed under /libOmexMeta/install-docker. See dockerfile for full set of commands to build libOmexMeta on ubuntu. Conda is preconfigured and pyomexmeta is installed.

Downloading Binaries

You can download binaries from the releases tab

Building from source

See the azure-pipelines.yml file to see how we build libOmexMeta on Azure Pipelines.

We use vcpkg for acquiring the dependencies that we need on all platforms. Therefore, the following works on windows, linux and macOS. Note that on linux you need gcc-9 or greater. libOmexMeta was developed with gcc-10.2.

# set variable to hold vcpkg location: 
VCPKG_INSTALL_PREFIX="/full/path/to/vcpkg"
git clone https://github.com/microsoft/vcpkg.git $VCPKG_INSTALL_PREFIX
cd $VCPKG_INSTALL_PREFIX
./bootstrap-vcpkg.sh
vcpkg integrate install
vcpkg install curl pcre openssl yajl sqlite3 liblzma

Now build libOmexMeta

git clone https://github.com/sys-bio/libOmexMeta.git
cd libOmexMeta
mkdir build
cd build
cmake -DVCPKG_ROOT=$VCPKG_INSTALL_PREFIX -DCMAKE_INSTALL_PREFIX="/full/path/to/where/you/want/to/install/libomexmeta" -DBUILD_TESTS=ON -DCMAKE_BUILD_TYPE=Release -DBUILD_PYTHON=ON ..
cmake --build . --target install --config Release -j 12

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyomexmeta-1.2.14-cp311-cp311-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyomexmeta-1.2.14-cp311-cp311-macosx_13_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.11 macOS 13.0+ ARM64

pyomexmeta-1.2.14-cp311-cp311-macosx_10_15_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

pyomexmeta-1.2.14-cp310-cp310-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyomexmeta-1.2.14-cp310-cp310-macosx_13_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.10 macOS 13.0+ ARM64

pyomexmeta-1.2.14-cp310-cp310-macosx_10_15_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

pyomexmeta-1.2.14-cp39-cp39-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyomexmeta-1.2.14-cp39-cp39-manylinux2014_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.9

pyomexmeta-1.2.14-cp39-cp39-macosx_13_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.9 macOS 13.0+ ARM64

pyomexmeta-1.2.14-cp39-cp39-macosx_10_15_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

pyomexmeta-1.2.14-cp38-cp38-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyomexmeta-1.2.14-cp38-cp38-manylinux2014_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.8

pyomexmeta-1.2.14-cp38-cp38-macosx_13_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.8 macOS 13.0+ ARM64

pyomexmeta-1.2.14-cp38-cp38-macosx_10_15_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

File details

Details for the file pyomexmeta-1.2.14-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyomexmeta-1.2.14-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 464a8741b39c366d62f30eb1b6dd73b7b937a2dc98f1c2003e95bc8839a97471
MD5 c87bcc408db110d0213362dad6dd09c5
BLAKE2b-256 339c8259bd73139f5b10243be3e781572939df4fbc5f4a46a33831f3ed017aa5

See more details on using hashes here.

File details

Details for the file pyomexmeta-1.2.14-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyomexmeta-1.2.14-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2fc82e35e68adb148b28a1c12e707007304baa28fac4a9c0125a5e5219b73304
MD5 e1cc98c91b07ef5a3e9925332ca49d7f
BLAKE2b-256 15333767da923b8ab8c453c533cb515bac19544695ad239e5ff17b1d92f0d493

See more details on using hashes here.

File details

Details for the file pyomexmeta-1.2.14-cp311-cp311-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for pyomexmeta-1.2.14-cp311-cp311-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 9c67d668aab3a31fc87248451d1e5f15a182fa8520c8e485efb5f8099f69aae1
MD5 45040d1e8a0f27c5d2c76ed220fba9c0
BLAKE2b-256 0ed0b9b829fdd460f05a0b1e522682bb2a5c20bb45d1019b8a419e131a73b380

See more details on using hashes here.

File details

Details for the file pyomexmeta-1.2.14-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pyomexmeta-1.2.14-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 c4f0a20511d80b4a1331e00e0242b1ae94ff12df1a048ad3ca629829b07acbf0
MD5 215c8d75ac957aee6d272e1a5d710b56
BLAKE2b-256 217fd86f40af234c82624fc6b5c5d98bb1b329f5554d3914aac39212685db498

See more details on using hashes here.

File details

Details for the file pyomexmeta-1.2.14-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyomexmeta-1.2.14-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2b8e26205707c276d56a188f0b305d29bc7e9ec71721471eda8bd521ce3e901f
MD5 2c2110def7ec9bd13d342146f7d8a4eb
BLAKE2b-256 a92c9d563a02822aa7d0f176c070581d377120b42e205882a24d25d2d5130f52

See more details on using hashes here.

File details

Details for the file pyomexmeta-1.2.14-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyomexmeta-1.2.14-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 76b3d755d5129bf6972edcd7572d3213c08a3c9b842d5de252b704e038882309
MD5 7ceba0b9001657dd4651836d7c2112c6
BLAKE2b-256 7fddcc8b30f7cf2fe35c8b269e0c421303b209db5b85fbf835b280944271c947

See more details on using hashes here.

File details

Details for the file pyomexmeta-1.2.14-cp310-cp310-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for pyomexmeta-1.2.14-cp310-cp310-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 000e0b7dfad84d6c570139a231ae76cec2d770a600e39d6df7376f0a7c567d5f
MD5 065afa8c925d04bd7c5c2b6219d65045
BLAKE2b-256 49a49607cfa2d1ee40fe709492886e239a944c2dbfc377683f0ef8db25071b7b

See more details on using hashes here.

File details

Details for the file pyomexmeta-1.2.14-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pyomexmeta-1.2.14-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 5394ea8f89b9e4bfdd0bc7c6173537d6858645fe04763618288d8ed855f03c2c
MD5 ee6475c641ed4d6fccbc735e20454f47
BLAKE2b-256 33bbd20b87bc23c2332049e7cf329c7debb03c5f6923833f816e775e8c872b94

See more details on using hashes here.

File details

Details for the file pyomexmeta-1.2.14-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyomexmeta-1.2.14-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3d9cd257da19b5a7d19bf51d089e3b8c4b38b7baf27e6c9c8029e01d3dda1e9c
MD5 8628f1e61974a63661001d2bab739ea4
BLAKE2b-256 6cf5697a30b0030dc4d1a174d4aaa033734d60ad121eacb9719ac370eeb821a5

See more details on using hashes here.

File details

Details for the file pyomexmeta-1.2.14-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyomexmeta-1.2.14-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 26ccad9da12d352fd289cf044a572736ce1ea7a60b9c7e340958db29f58b5257
MD5 854e900c9e19b161fdf10f56ae4eb308
BLAKE2b-256 7cec7cee13b6bd67f6a13ba474ecc1aabc9f32b75ff634ce43dd0e8de7efebd7

See more details on using hashes here.

File details

Details for the file pyomexmeta-1.2.14-cp39-cp39-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for pyomexmeta-1.2.14-cp39-cp39-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 e44459bccd0e354c72645ef2db73b8da246fac9b6e46ff9b19a94aaf2632ec7e
MD5 7c1d3b3129596f15872906f7ea601e17
BLAKE2b-256 b379e2bbfe79ccdd0c4bed2edc1a237a330f9786928f4239e6dee3b85cfc4835

See more details on using hashes here.

File details

Details for the file pyomexmeta-1.2.14-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pyomexmeta-1.2.14-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 282cd500860fdcef64c00ea9f31c30ea12def0095c81f1a2d255554fab036e37
MD5 4c9663062b466079479117760c9cbd85
BLAKE2b-256 47f51090ec1396fdbed4ef3411597f8a85896f4244e220e70f77e15c9b92a199

See more details on using hashes here.

File details

Details for the file pyomexmeta-1.2.14-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyomexmeta-1.2.14-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b92917129e6b9002a8fbbc6602bb5955a2e6da8a991d3962a561ab39622442ee
MD5 61e5eefe3173f704852c9dc9ce93a18f
BLAKE2b-256 c1456f4fc56fea066db1301ab7c05448e8b91b5d12caf107222b11152ba3a592

See more details on using hashes here.

File details

Details for the file pyomexmeta-1.2.14-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyomexmeta-1.2.14-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 894b567c5fb2582692ad4fb5eae12cbd5543d3cd538fabd6a5bf147501cd3c1d
MD5 56d804cd13bda7b9814ec00d61b33ccb
BLAKE2b-256 6d37015c289a4ec051c0aa04789318cb5f3d6a7ba7e8fac5ca15ee0b99fc53c4

See more details on using hashes here.

File details

Details for the file pyomexmeta-1.2.14-cp38-cp38-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for pyomexmeta-1.2.14-cp38-cp38-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 f37cd47058d73f4a0675840e9d0b6d9d50bb256fd7dd542d8a82ff957d12623b
MD5 0004fc3f03ce712d6b4f434dc3c4c52f
BLAKE2b-256 a7d1c0bd2f6bdeceb39fa8cbff78d1b0e0701f825e757f861350bff73dab966a

See more details on using hashes here.

File details

Details for the file pyomexmeta-1.2.14-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pyomexmeta-1.2.14-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 6bcaa11b2c4cdbbf8b38b9d5afdbc6405fe33bcb4b62260c1ff08cb7e2e33de5
MD5 80cdfada7b68c3d7457bcc9812fc750d
BLAKE2b-256 84fc9a04e3f11fa4883c78ed102f66a67f815966e756d56813cf3ccdc39ed516

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page