Skip to main content

Command line tool to manage ontologies and their imports in a local environment

Project description

PyOntoenv

Installation

pip install pyontoenv

Usage

from ontoenv import Config, OntoEnv
from rdflib import Graph

cfg = Config(["../brick"], strict=False, offline=True)

# make environment
env = OntoEnv(cfg)

g = Graph()
# get the transitive owl:imports closure into 'g'
env.get_closure("https://brickschema.org/schema/1.4-rc1/Brick", g)

brick = Graph()
brick.parse("Brick.ttl", format="turtle")
# transitively import dependencies into the 'brick' graph, using the owl:imports declarations
env.import_dependencies(brick)

# pull Brick graph out of environment
brick = env.get_graph("https://brickschema.org/schema/1.4-rc1/Brick")

# import graphs by name
env.import_graph(brick, "https://w3id.org/rec")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyontoenv-0.1.9.tar.gz (904.4 kB view details)

Uploaded Source

Built Distributions

pyontoenv-0.1.9-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyontoenv-0.1.9-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyontoenv-0.1.9-cp312-cp312-musllinux_1_2_x86_64.whl (8.0 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

pyontoenv-0.1.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pyontoenv-0.1.9-cp311-cp311-musllinux_1_2_x86_64.whl (8.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

pyontoenv-0.1.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyontoenv-0.1.9-cp310-cp310-musllinux_1_2_x86_64.whl (8.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

pyontoenv-0.1.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyontoenv-0.1.9-cp39-cp39-musllinux_1_2_x86_64.whl (8.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

pyontoenv-0.1.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyontoenv-0.1.9-cp38-cp38-musllinux_1_2_x86_64.whl (8.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

pyontoenv-0.1.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyontoenv-0.1.9-cp38-abi3-win_amd64.whl (4.9 MB view details)

Uploaded CPython 3.8+ Windows x86-64

pyontoenv-0.1.9-cp38-abi3-musllinux_1_2_x86_64.whl (8.0 MB view details)

Uploaded CPython 3.8+ musllinux: musl 1.2+ x86-64

pyontoenv-0.1.9-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ x86-64

pyontoenv-0.1.9-cp38-abi3-macosx_11_0_arm64.whl (5.4 MB view details)

Uploaded CPython 3.8+ macOS 11.0+ ARM64

pyontoenv-0.1.9-cp38-abi3-macosx_10_14_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.8+ macOS 10.14+ x86-64

pyontoenv-0.1.9-cp38-abi3-macosx_10_14_x86_64.macosx_11_0_arm64.macosx_10_14_universal2.whl (11.0 MB view details)

Uploaded CPython 3.8+ macOS 10.14+ universal2 (ARM64, x86-64) macOS 10.14+ x86-64 macOS 11.0+ ARM64

File details

Details for the file pyontoenv-0.1.9.tar.gz.

File metadata

  • Download URL: pyontoenv-0.1.9.tar.gz
  • Upload date:
  • Size: 904.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for pyontoenv-0.1.9.tar.gz
Algorithm Hash digest
SHA256 273e5bcf9255d2bb526e81c34733e9380897202f8ab8ba5df22225d22c7bf113
MD5 70105bac3f630dc2140acbde54050713
BLAKE2b-256 7513eb92a4816c3527011c92b0033bf90eed35b76f1c9a7d1d828db777c40c55

See more details on using hashes here.

File details

Details for the file pyontoenv-0.1.9-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyontoenv-0.1.9-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 30e69b75f0101876200659b68568af0fd7c62da9a684e63c81b477dd572f71fb
MD5 0bce54fbb1a35e56bc4b251edf2aea10
BLAKE2b-256 8a7f3aeb625e34944197435f648222928e87ca608365d4619c738e3a6539bea4

See more details on using hashes here.

File details

Details for the file pyontoenv-0.1.9-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyontoenv-0.1.9-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ef7c8d3fe86f8aa15ef52de8a88e45f8fcf66e31aec75478a6cebf94ffd559fd
MD5 3ff7405ac5b81c5113767915ec15ea18
BLAKE2b-256 913120a195ef564a8f785f5f0dd8440afe130bbb58ed161042d76a39a4a33ecd

See more details on using hashes here.

File details

Details for the file pyontoenv-0.1.9-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyontoenv-0.1.9-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 25c8bd4c6a2fcd0cbe3af33870459335e8e9d35b0c02e68bccf7dacbb84ca86b
MD5 ff5013e6fb801987576f8f15a6c218d7
BLAKE2b-256 61054470b4ba377e3ef4e9271b5c7cdca64ec7569da55b8cb54ca12a3c0324c3

See more details on using hashes here.

File details

Details for the file pyontoenv-0.1.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyontoenv-0.1.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 627d0c6221a78d346b67a7bc43de90b598f4c7d80f260038da68b221836cf174
MD5 2fd9578427afcfc3bdb7e0e3f0320c56
BLAKE2b-256 a2aea8d9f51ab095fd520f93f5f4fd4ed8986494e7b52acab58271fdae8e462f

See more details on using hashes here.

File details

Details for the file pyontoenv-0.1.9-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyontoenv-0.1.9-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 ef339bec5ca249a1077660cc0a98b12669c6bf543612946a99b5b0ceaa3e8643
MD5 1e0ef17146bc64dae5736faef3d54b7c
BLAKE2b-256 038cddae07be2f6c159ce0cf67f8a4ada347d15af4b8ef1ff66ca63d2075eec1

See more details on using hashes here.

File details

Details for the file pyontoenv-0.1.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyontoenv-0.1.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 842ea2e2e9cf6f837665cb254a72a9bdfdf673c1b6acd340a39bd31629f97aa9
MD5 752bc69b09a03261d33fc0d62c0cf849
BLAKE2b-256 5ca7e5819a4792aa80cddcb8cab26d8f28730eec315529ae9b8fbb9a8c742262

See more details on using hashes here.

File details

Details for the file pyontoenv-0.1.9-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyontoenv-0.1.9-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 3f195ff5c1c0768ad2d8535e53be59bd9f447093e4ca7c923b565dfefb4fb765
MD5 87444392919684e325ff06634b1c34e0
BLAKE2b-256 6315ac3148b943da4b1ce3b673112e172185f8988240016b6c7a1026988eaf58

See more details on using hashes here.

File details

Details for the file pyontoenv-0.1.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyontoenv-0.1.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d4adf35cea08fa7ba100766f7e3006a2f6a46f0cd9a7d78c8381562146eadf2b
MD5 1531740da9d2e99ecc555764535d6e61
BLAKE2b-256 06afa67baabcbdeee1bede28b84ff85d46e100b9ccaa5fa15570aea57a4f3647

See more details on using hashes here.

File details

Details for the file pyontoenv-0.1.9-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyontoenv-0.1.9-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 6ffa92e1d95fee007f833124ed93dcb50a3d2f9c633c41cb8d666e93ddae2d18
MD5 492108c87b4214f4e54a09bd67bba6dd
BLAKE2b-256 0f6ca526162b791b68f68c1e288a018d975c866beddf3fe6c747a4f209dbf637

See more details on using hashes here.

File details

Details for the file pyontoenv-0.1.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyontoenv-0.1.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c03d84c8182ae71b541a1cceb90a4a842b9a306916b517d90cc2d63ac42f30ea
MD5 71261d69523f210d19cd157a3c724e15
BLAKE2b-256 692738d4bc5228aca72a02435271ab3406ff65499932c74c68bb199e695d2270

See more details on using hashes here.

File details

Details for the file pyontoenv-0.1.9-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyontoenv-0.1.9-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 70a853dc82046d1d08eb2999a05abdc8877d6a900e7b686cc62598f68b5a6f50
MD5 53d375ac9cdcbc66bb2bda1ca3a04628
BLAKE2b-256 26a5170b2eeec02de65f44226ccbbfb88b90b3e857c43b5a385d8f6c416ddceb

See more details on using hashes here.

File details

Details for the file pyontoenv-0.1.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyontoenv-0.1.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ac0e0b5ddc6515c928b6bd0b888dec3c823a7be2f3b731da120506ceed8e4335
MD5 9be8dca8ac168af23b23c8be27ee9e36
BLAKE2b-256 498599a35e56a6805bfa42ec51709389f007ae4ce8059e0ec195b1cfdc00df23

See more details on using hashes here.

File details

Details for the file pyontoenv-0.1.9-cp38-abi3-win_amd64.whl.

File metadata

  • Download URL: pyontoenv-0.1.9-cp38-abi3-win_amd64.whl
  • Upload date:
  • Size: 4.9 MB
  • Tags: CPython 3.8+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for pyontoenv-0.1.9-cp38-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 3a63e6b50823542e4691457251b588b4f677cd0dd1bd365e66e22a66493604c5
MD5 430237f3fc0961b2c3f1898c578eddd3
BLAKE2b-256 aeee788afd983176bd816097aa56c6159cc74803354c6b49cb24bd5bd56e7452

See more details on using hashes here.

File details

Details for the file pyontoenv-0.1.9-cp38-abi3-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyontoenv-0.1.9-cp38-abi3-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 e9afea135903c16d6e7f4ee69e5646c445850acacfef9232ec3ea440c35375c1
MD5 262052ee4f7b710a37455547dcbe6acc
BLAKE2b-256 f89a9850377ce7c33aabc9758b870cea0c6e3bdae1ae2e9aa419e02d90af4bdd

See more details on using hashes here.

File details

Details for the file pyontoenv-0.1.9-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyontoenv-0.1.9-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 94adcd68bb2e111f62daa11ee38d335879dd09189b78b6b7cce2b68b874b7879
MD5 316cabd45176bf6c2d6868b1489cfe1f
BLAKE2b-256 ba542c4799d5b7777f3d740e36e4e7fb2c5b8b510084fc4bdb16def108e791a4

See more details on using hashes here.

File details

Details for the file pyontoenv-0.1.9-cp38-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyontoenv-0.1.9-cp38-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9eaf0e3841d3350fe455f857f104230d902a3d0e70b37e1adcc30e4f80955cbe
MD5 4994e3dd54f25aa9fb9e762a0c2c44a4
BLAKE2b-256 1eec474fa4ab69ab910e30b7bca5fb470bd2ac4a7bdde79000aa665d2bc90c0d

See more details on using hashes here.

File details

Details for the file pyontoenv-0.1.9-cp38-abi3-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pyontoenv-0.1.9-cp38-abi3-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0555906c3b40e2034278223929d5961803efe93f273a58d0e24f0a121480dd0d
MD5 50df3de5951fab81fb6bc0f70844e6d7
BLAKE2b-256 f8f09ec04fbdc8e2c86d2c7f90de6eb227d6847ed5da98f2290c2808f94eb38e

See more details on using hashes here.

File details

Details for the file pyontoenv-0.1.9-cp38-abi3-macosx_10_14_x86_64.macosx_11_0_arm64.macosx_10_14_universal2.whl.

File metadata

File hashes

Hashes for pyontoenv-0.1.9-cp38-abi3-macosx_10_14_x86_64.macosx_11_0_arm64.macosx_10_14_universal2.whl
Algorithm Hash digest
SHA256 4ed9816d7907306dd4d1f8d64e027dc91587e6743845acdc5e101015b697fd48
MD5 fdad8f3b2fab7e20b424ce89adfd8a22
BLAKE2b-256 5d7e4ca8912ed68760d015c92ce8f6553dd1de0c54363c82abf9c6ca1d6e9ce1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page