Skip to main content

PyOPA - optimal pairwise sequence alignments

Project description

This python package provides a fast implementation to compute

  • optimal pairwise alignments of molecular sequences

  • ML distance estimates of pairwise alignments.

The implementation uses Farrar’s algorithm <http://bioinformatics.oxfordjournals.org/content/23/2/156.abstract>_ to compute the optimal pairwise alignment using SSE vectorization operations. This package implements the Smith-Waterman and Needleman-Wunsch algorithm to compute the local and global sequence alignments.

Example

import pyopa
log_pam1_env = pyopa.read_env_json(os.path.join(pyopa.matrix_dir(), 'logPAM1.json'))
s1 = pyopa.Sequence('GCANLVSRLENNSRLLNRDLIAVKINADVYKDPNAGALRL')
s2 = pyopa.Sequence('GCANPSTLETNSQLVNRELIAVKINPRVYKGPNLGAFRL')

# super fast check whether the alignment reaches a given min-score
min_score = 100
pam250_env = pyopa.generate_env(log_pam1_env, 250, min_score)
pyopa.align_short(s1, s2, pam250_env)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyopa-0.8.4.tar.gz (4.0 MB view details)

Uploaded Source

Built Distributions

pyopa-0.8.4-cp311-cp311-musllinux_1_1_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pyopa-0.8.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyopa-0.8.4-cp311-cp311-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyopa-0.8.4-cp311-cp311-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyopa-0.8.4-cp310-cp310-musllinux_1_1_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pyopa-0.8.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyopa-0.8.4-cp310-cp310-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyopa-0.8.4-cp310-cp310-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyopa-0.8.4-cp39-cp39-musllinux_1_1_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pyopa-0.8.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyopa-0.8.4-cp39-cp39-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyopa-0.8.4-cp39-cp39-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyopa-0.8.4-cp38-cp38-musllinux_1_1_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pyopa-0.8.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyopa-0.8.4-cp38-cp38-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyopa-0.8.4-cp38-cp38-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyopa-0.8.4-cp37-cp37m-musllinux_1_1_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pyopa-0.8.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyopa-0.8.4-cp37-cp37m-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pyopa-0.8.4-cp36-cp36m-musllinux_1_1_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

pyopa-0.8.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pyopa-0.8.4-cp36-cp36m-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file pyopa-0.8.4.tar.gz.

File metadata

  • Download URL: pyopa-0.8.4.tar.gz
  • Upload date:
  • Size: 4.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for pyopa-0.8.4.tar.gz
Algorithm Hash digest
SHA256 f83d1a7fddeb8e5d4abd63c38c9f638b2330ef323b2501031b4f9efa67abe819
MD5 2487f8a1cdabf51103e0b822eae6d91c
BLAKE2b-256 71f01485ea7333f19d8bf677ead6bdc5b543941f58c2c68fa76e68d9a3b4631f

See more details on using hashes here.

File details

Details for the file pyopa-0.8.4-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyopa-0.8.4-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 23a4627a018de0eb9539e158d77d4016af93c147bcbcb07cb20f7d8be7ccc824
MD5 7c4dfe46744fc24e1acc57f39fbd20c0
BLAKE2b-256 86a0843bcaf1fe9f67bb81980b57ce2a5f5ccded404cf7c4d9cd012266c03b85

See more details on using hashes here.

File details

Details for the file pyopa-0.8.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyopa-0.8.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8a40517c93fcaa44608b94dd58b446e4a6a8d2ad52efa42b6c7bc99288474479
MD5 c1cde98e7e10d30823a44a5063566033
BLAKE2b-256 b5ad3518ffa17dc52e8a653b82a2bcab488e2041d258659817ee153d9cc3b03b

See more details on using hashes here.

File details

Details for the file pyopa-0.8.4-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyopa-0.8.4-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7699a06132a614915a8927d7d1367ef9e83f8707b17880a091be9b4638332d7a
MD5 504959de2946772698157682b54f9f7d
BLAKE2b-256 141db64e6a264cb5fbae5f44a59d2a4a805ca9d18cf5992c0cb13eef2c28910d

See more details on using hashes here.

File details

Details for the file pyopa-0.8.4-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyopa-0.8.4-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1d08b21177d97bfdaee90148ece8e2b3c7579c4a211638ea5852b6607b464da3
MD5 c1e23675aec9f3f2c685c82c83fa43c6
BLAKE2b-256 bb4bc0ca7757a975abf8ac2af01ca3dddd9ca817e6f5139ed18843cfe9da3f92

See more details on using hashes here.

File details

Details for the file pyopa-0.8.4-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyopa-0.8.4-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f184f4b36fc8e4dd03c59a600b3256f12d39d02fb790469309931c87f78306f4
MD5 d89721e27e0a159a38d03e36d69c71ca
BLAKE2b-256 aecfa7276fbf5cae01ecfc81575f831969229903403556de0508b1bef1786747

See more details on using hashes here.

File details

Details for the file pyopa-0.8.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyopa-0.8.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 067e0f692077c83b5b3344fbbd64f5d7439054ee7e986796cd1ec090885e1482
MD5 376ba7b4231d8dbef11d3da85baadafb
BLAKE2b-256 e9f364abfabb8c3419c2287def9f58bcd079aeefc937b8101158050444339cdb

See more details on using hashes here.

File details

Details for the file pyopa-0.8.4-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyopa-0.8.4-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bdea0dc270fcd6496b1c932e8762b0f7919cd6a9a26dd152bd40041300684a17
MD5 38241a1ae54a3be0044387d1d1215775
BLAKE2b-256 d0b8a82eb425d424d592b7ed199d08c2a5b3eb315a276c85115ad9bbd6c3d34b

See more details on using hashes here.

File details

Details for the file pyopa-0.8.4-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyopa-0.8.4-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1fd0b6dbfcd0397390065f0cecb973cc0daf1d98e2473bc4d4d0bc5cb7aa8b30
MD5 c85c73e7d6522c875fb4f9c769d5dc38
BLAKE2b-256 ecbc01970349d53dea379e7cbf664f15b0d059d219dcabc5f695125773f2f5bc

See more details on using hashes here.

File details

Details for the file pyopa-0.8.4-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyopa-0.8.4-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d375a5092e22a5635387270b2fbbc5aa380810ea58993f82d1b81d0e4950be51
MD5 f866725b1a536c2e6180e7d832b50160
BLAKE2b-256 470a98ee752cbb29a5cb3c677c485b34e0fb4794815fb271967508385568575c

See more details on using hashes here.

File details

Details for the file pyopa-0.8.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyopa-0.8.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bc7784364e255bfad3bc102a4b88c891216db03d7104fe9f26f2b8e488f9cac6
MD5 5701ff286d4d8b99d6003ea569097d5c
BLAKE2b-256 00bb5e1e3ff7569748713826ff739bb27fb9095d31c32378f8cfdbcee29c1721

See more details on using hashes here.

File details

Details for the file pyopa-0.8.4-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyopa-0.8.4-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 274301ea0bad35f16a66484b9c2fb0a10cf3302abbad565454447f3846f12156
MD5 1cdf8fc4da3645f6f21b737cb8ce9bad
BLAKE2b-256 542a636fe95a20cfd22928055889a760d1b295ee00efcee1c8303731457868c9

See more details on using hashes here.

File details

Details for the file pyopa-0.8.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyopa-0.8.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ff16bc7bb7a3f488c06f1aa0a5e7aa0268afe5bec77830276a36ef873802d4d2
MD5 3f848bc22be0adb67b52b3d695d7f1e9
BLAKE2b-256 df3c4db4e7ac853c576f04add4d321cb000bfd2dca9fd7c896ebea63628f2bca

See more details on using hashes here.

File details

Details for the file pyopa-0.8.4-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyopa-0.8.4-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f006a1eb5fa848b5cecc2fa8bcbffb2201933504ea3fff08608b210210c778bd
MD5 005af4d66507bc3b321fbd02f3cfea0d
BLAKE2b-256 e754af0ec6dbcfc5f97b5b1ceb36b8d4c2c246836407c0da60de4d011a14aad2

See more details on using hashes here.

File details

Details for the file pyopa-0.8.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyopa-0.8.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d0b07a8d01cc83ad99b2b958f2f829f2c62b04f2ff7b31c0fc9380714c03ba6b
MD5 b9ec801d53af4efb278a7ce2626f30e7
BLAKE2b-256 0986c34d8ed86ef8fd382ace8df50b45a08cec91fc08e96da53edaadeba88a79

See more details on using hashes here.

File details

Details for the file pyopa-0.8.4-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyopa-0.8.4-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 841e8fb227d1305853f87e454b6e186962b5bb8efcb82880fee1ebe4f43a5fc6
MD5 3da900b417bfb61ae52f432902a78885
BLAKE2b-256 cb590b7df4997e01432323fef687056c30708b7b6c6f7f2679be6b9ebd8b5a81

See more details on using hashes here.

File details

Details for the file pyopa-0.8.4-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyopa-0.8.4-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 67b8204023ee0926bd755f735946dc1fc11ada09ec7d4e2835cf80f300bf043c
MD5 79de5d4951008864ae993898a36662a4
BLAKE2b-256 c90f5d450fc448c9b10051bdb4eb02ada402c85f321870d7a4ace5ca84901ac2

See more details on using hashes here.

File details

Details for the file pyopa-0.8.4-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyopa-0.8.4-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 be72a0a6a97f023bb8ffe1612cbe82487f08502ae4a315644abe3c8918fb2250
MD5 9a3db71bf53c2b5ee22f2dd28017bc38
BLAKE2b-256 a517b03cf6b9b17abd08d4e9165443b317935291ef1ac568c24d8e350e0e6ee0

See more details on using hashes here.

File details

Details for the file pyopa-0.8.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyopa-0.8.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d897e5d38c86b6e0b1418449c420ac84f18baf000278ea0bfd47568a85b02463
MD5 6789afeac1ffec806640248834dce1c2
BLAKE2b-256 459a0379fdeebacce224f7979166e4727afbcac149d6809df9e1e8c2fa04a4d5

See more details on using hashes here.

File details

Details for the file pyopa-0.8.4-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyopa-0.8.4-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 029fcacb44d2bcd1f5dced906037b4e17c6eb583cb15c6b52a208f3d28177520
MD5 afdf5f943a9328cbca125bb2af8f8c0d
BLAKE2b-256 9906f5f5be416aea98ff9021809ff28d47ea648f8d89c68ae8df36bc335c9ead

See more details on using hashes here.

File details

Details for the file pyopa-0.8.4-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyopa-0.8.4-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 37eaf805ce193eb288a38e4b4731f0a0f7f1a1b8b7c904efdfb8ed53cc084fbe
MD5 27a9b0ac5ca4d94716decdb48fd9c137
BLAKE2b-256 a75977f971c9a8cf0f6bb67ed13c759822c99d1e196e2471e31a164eb5aa9c20

See more details on using hashes here.

File details

Details for the file pyopa-0.8.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyopa-0.8.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 37261da0339e77bb1c80b01844906db3df19817e277e334681621d4e03e7c951
MD5 4b1158e2e9a7b1c29611b879b4a9425c
BLAKE2b-256 32833397ffa734da7b190b314003c9d1092971fa8f5c51136f5ab0965f8a881b

See more details on using hashes here.

File details

Details for the file pyopa-0.8.4-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyopa-0.8.4-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 db24b34516d04ad51ec38391f92f7a3900dadd2ffaff43294be6b1405e028be3
MD5 c2d48e1b4c4fadc26adb4f8620d9e8ea
BLAKE2b-256 2486ad15c59157bf28522364ae422adda1b3f0c69c07d22fc0e59595f2cf3960

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page