Skip to main content

PyOPA - optimal pairwise sequence alignments

Project description

This python package provides a fast implementation to compute

  • optimal pairwise alignments of molecular sequences
  • ML distance estimates of pairwise alignments.

The implementation uses Farrar’s algorithm <http://bioinformatics.oxfordjournals.org/content/23/2/156.abstract>_ to compute the optimal pairwise alignment using SSE vectorization operations. This package implements the Smith-Waterman and Needleman-Wunsch algorithm to compute the local and global sequence alignments.

Example

import pyopa
log_pam1_env = pyopa.read_env_json(os.path.join(pyopa.matrix_dir(), 'logPAM1.json'))
s1 = pyopa.Sequence('GCANLVSRLENNSRLLNRDLIAVKINADVYKDPNAGALRL')
s2 = pyopa.Sequence('GCANPSTLETNSQLVNRELIAVKINPRVYKGPNLGAFRL')

# super fast check whether the alignment reaches a given min-score
min_score = 100
pam250_env = pyopa.generate_env(log_pam1_env, 250, min_score)
pyopa.align_short(s1, s2, pam250_env)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyopa-0.8.2.tar.gz (4.0 MB view hashes)

Uploaded source

Built Distributions

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page