Skip to main content
Help improve PyPI by participating in a 5-minute user interface survey!

PyOPA - optimal pairwise sequence alignments

Project Description

This python package provides a fast implementation to compute

  • optimal pairwise alignments of molecular sequences
  • ML distance estimates of pairwise alignments.

The implementation uses Farrar’s algorithm <http://bioinformatics.oxfordjournals.org/content/23/2/156.abstract>_ to compute the optimal pairwise alignment using SSE vectorization operations. This package implements the Smith-Waterman and Needleman-Wunsch algorithm to compute the local and global sequence alignments.

Example

import pyopa
log_pam1_env = pyopa.read_env_json(os.path.join(pyopa.matrix_dir(), 'logPAM1.json'))
s1 = pyopa.Sequence('GCANLVSRLENNSRLLNRDLIAVKINADVYKDPNAGALRL')
s2 = pyopa.Sequence('GCANPSTLETNSQLVNRELIAVKINPRVYKGPNLGAFRL')

# super fast check whether the alignment reaches a given min-score
min_score = 100
pam250_env = pyopa.generate_env(log_pam1_env, 250, min_score)
pyopa.align_short(s1, s2, pam250_env)

Release history Release notifications

This version
History Node

0.7.0

History Node

0.6

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
pyopa-0.7.0-cp27-cp27mu-macosx_10_11_x86_64.whl (6.8 MB) Copy SHA256 hash SHA256 Wheel cp27 Sep 30, 2016
pyopa-0.7.0-cp35-cp35m-macosx_10_11_x86_64.whl (6.8 MB) Copy SHA256 hash SHA256 Wheel cp35 Sep 30, 2016
pyopa-0.7.0.tar.gz (8.0 MB) Copy SHA256 hash SHA256 Source None Sep 30, 2016

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging CloudAMQP CloudAMQP RabbitMQ AWS AWS Cloud computing Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page