Skip to main content

PyOPA - optimal pairwise sequence alignments

Project description

This python package provides a fast implementation to compute

  • optimal pairwise alignments of molecular sequences
  • ML distance estimates of pairwise alignments.

The implementation uses Farrar’s algorithm <http://bioinformatics.oxfordjournals.org/content/23/2/156.abstract>_ to compute the optimal pairwise alignment using SSE vectorization operations. This package implements the Smith-Waterman and Needleman-Wunsch algorithm to compute the local and global sequence alignments.

Example

import pyopa
log_pam1_env = pyopa.read_env_json(os.path.join(pyopa.matrix_dir(), 'logPAM1.json'))
s1 = pyopa.Sequence('GCANLVSRLENNSRLLNRDLIAVKINADVYKDPNAGALRL')
s2 = pyopa.Sequence('GCANPSTLETNSQLVNRELIAVKINPRVYKGPNLGAFRL')

# super fast check whether the alignment reaches a given min-score
min_score = 100
pam250_env = pyopa.generate_env(log_pam1_env, 250, min_score)
pyopa.align_short(s1, s2, pam250_env)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for pyopa, version 0.8.0
Filename, size File type Python version Upload date Hashes
Filename, size pyopa-0.8.0-cp27-cp27m-manylinux1_x86_64.whl (3.9 MB) File type Wheel Python version cp27 Upload date Hashes View
Filename, size pyopa-0.8.0-cp27-cp27mu-macosx_10_11_x86_64.whl (3.5 MB) File type Wheel Python version cp27 Upload date Hashes View
Filename, size pyopa-0.8.0-cp27-cp27mu-manylinux1_x86_64.whl (3.9 MB) File type Wheel Python version cp27 Upload date Hashes View
Filename, size pyopa-0.8.0-cp34-cp34m-macosx_10_14_x86_64.whl (3.5 MB) File type Wheel Python version cp34 Upload date Hashes View
Filename, size pyopa-0.8.0-cp34-cp34m-manylinux1_x86_64.whl (3.9 MB) File type Wheel Python version cp34 Upload date Hashes View
Filename, size pyopa-0.8.0-cp35-cp35m-macosx_10_11_x86_64.whl (3.5 MB) File type Wheel Python version cp35 Upload date Hashes View
Filename, size pyopa-0.8.0-cp35-cp35m-manylinux1_x86_64.whl (3.9 MB) File type Wheel Python version cp35 Upload date Hashes View
Filename, size pyopa-0.8.0-cp36-cp36m-macosx_10_11_x86_64.whl (3.5 MB) File type Wheel Python version cp36 Upload date Hashes View
Filename, size pyopa-0.8.0-cp36-cp36m-manylinux1_x86_64.whl (3.9 MB) File type Wheel Python version cp36 Upload date Hashes View
Filename, size pyopa-0.8.0-cp37-cp37m-macosx_10_14_x86_64.whl (3.5 MB) File type Wheel Python version cp37 Upload date Hashes View
Filename, size pyopa-0.8.0-cp37-cp37m-manylinux1_x86_64.whl (3.9 MB) File type Wheel Python version cp37 Upload date Hashes View
Filename, size pyopa-0.8.0-cp38-cp38-manylinux1_x86_64.whl (3.9 MB) File type Wheel Python version cp38 Upload date Hashes View
Filename, size pyopa-0.8.0-cp39-cp39-manylinux1_x86_64.whl (3.9 MB) File type Wheel Python version cp39 Upload date Hashes View
Filename, size pyopa-0.8.0.tar.gz (3.4 MB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring DigiCert DigiCert EV certificate Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page