Skip to main content

Python wrapper for C++ LCMS library OpenMS

Project description

Introduction

This package contains Python bindings for a large part of the OpenMS library (http://www.open-ms.de) for mass spectrometry based proteomics. It thus provides providing facile access to a feature-rich, open-source algorithm library for mass-spectrometry based proteomics analysis. These Python bindings allow raw access to the data-structures and algorithms implemented in OpenMS, specifically those for file access (mzXML, mzML, TraML, mzIdentML among others), basic signal processing (smoothing, filtering, de-isotoping and peak-picking) and complex data analysis (including label-free, SILAC, iTRAQ and SWATH analysis tools).

The pyOpenMS package runs - like OpenMS - on Windows, Linux and OSX.

Installation

We provide binary packages for Python 2.7 and 3.3, 3.4 and 3.5 on Windows (64 bit and 32 bit) and Linux 64 bit which makes the installation very straightforward with pip. Note that Python 3.5 is not yet supported under Windows. For other platforms, please refer to the compilation instructions.

Binary installation

On linux machines you can install pyopenms with (you will need numpy in addition):

$ easy_install pyopenms

For other systems first ensure that your pip is up to date, then install the pyopenms wheel (you will need numpy in addition):

$ pip install -U pip
$ pip install -U wheel
$ pip install pyopenms

Source installation

Building the Python packages is generally not straight forward, we recommend that you use the binary packages provided for common Python interpreter versions and operating systems. If you decide to build pyOpenMS on your own, please read http://ftp.mi.fu-berlin.de/pub/OpenMS/release-documentation/html/pyOpenMS.html and https://github.com/OpenMS/OpenMS/wiki/Build-pyOpenMS-on-Windows and ask for help on our mailing list https://lists.sourceforge.net/lists/listinfo/open-ms-general

License

pyOpenMS is published under the 3-clause BSD licence, see ./pyOpenMS/License.txt

Documentation

pyOpenMS follows the OpenMS documentation very closely. Additionally, there is also a pyOpenMS Manual available. The online manual contains a complete record of every wrapped class and function while the documentation of the corresponding class or function can be inferred from the OpenMS online documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyopenms-2.1.0a-cp27-cp27m-macosx_10_12_intel.whl (15.3 MB view details)

Uploaded CPython 2.7m macOS 10.12+ Intel (x86-64, i386)

pyopenms-2.1.0-py3.4-win-amd64.egg (13.0 MB view details)

Uploaded Egg

pyopenms-2.1.0-py3.4-win32.egg (11.0 MB view details)

Uploaded Egg

pyopenms-2.1.0-py3.3-win-amd64.egg (12.9 MB view details)

Uploaded Egg

pyopenms-2.1.0-py3.3-win32.egg (11.0 MB view details)

Uploaded Egg

pyopenms-2.1.0-py2.7-win-amd64.egg (14.1 MB view details)

Uploaded Egg

pyopenms-2.1.0-py2.7-win32.egg (11.0 MB view details)

Uploaded Egg

pyopenms-2.1.0-cp35-cp35m-manylinux1_x86_64.whl (12.9 MB view details)

Uploaded CPython 3.5m

pyopenms-2.1.0-cp34-cp34m-win_amd64.whl (13.0 MB view details)

Uploaded CPython 3.4m Windows x86-64

pyopenms-2.1.0-cp34-cp34m-win32.whl (11.0 MB view details)

Uploaded CPython 3.4m Windows x86

pyopenms-2.1.0-cp34-cp34m-manylinux1_x86_64.whl (12.9 MB view details)

Uploaded CPython 3.4m

pyopenms-2.1.0-cp33-cp33m-win_amd64.whl (12.9 MB view details)

Uploaded CPython 3.3m Windows x86-64

pyopenms-2.1.0-cp33-cp33m-win32.whl (11.0 MB view details)

Uploaded CPython 3.3m Windows x86

pyopenms-2.1.0-cp27-none-manylinux1_x86_64.whl (14.4 MB view details)

Uploaded CPython 2.7

pyopenms-2.1.0-cp27-cp27m-win_amd64.whl (14.1 MB view details)

Uploaded CPython 2.7m Windows x86-64

pyopenms-2.1.0-cp27-cp27m-win32.whl (11.0 MB view details)

Uploaded CPython 2.7m Windows x86

pyopenms-2.1.0-cp27-cp27m-macosx_10_11_intel.whl (15.2 MB view details)

Uploaded CPython 2.7m macOS 10.11+ Intel (x86-64, i386)

pyopenms-2.1.0-cp27-cp27m-macosx_10_9_intel.whl (15.2 MB view details)

Uploaded CPython 2.7m macOS 10.9+ Intel (x86-64, i386)

File details

Details for the file pyopenms-2.1.0a-cp27-cp27m-macosx_10_12_intel.whl.

File metadata

File hashes

Hashes for pyopenms-2.1.0a-cp27-cp27m-macosx_10_12_intel.whl
Algorithm Hash digest
SHA256 0621fb13d2ab7c112f0f2feda89da451e426ffbedd565d1bfe42a3a18c4a8c54
MD5 fe252faa4874b3feac6005b13b3ece2d
BLAKE2b-256 bf1f84f6c299343d8e0373745a9b2662fc9b936de1cee9ee2b4563ec197de53b

See more details on using hashes here.

File details

Details for the file pyopenms-2.1.0-py3.4-win-amd64.egg.

File metadata

File hashes

Hashes for pyopenms-2.1.0-py3.4-win-amd64.egg
Algorithm Hash digest
SHA256 b74848ab5893fc41022965a242461209b532a0e1e94e2a7a7db1aa1000dec70f
MD5 4faca0c7a99bbb41fa5cc28aa91f051d
BLAKE2b-256 14cfbcae6c3e5b4fc2332703f70976f60825b3cf35342198edb52942c40b1758

See more details on using hashes here.

File details

Details for the file pyopenms-2.1.0-py3.4-win32.egg.

File metadata

File hashes

Hashes for pyopenms-2.1.0-py3.4-win32.egg
Algorithm Hash digest
SHA256 6f5fcf96f038c0726e0eceb0fe4c0093782c9a1ec36fea4bb23b8d2f712b3638
MD5 75b6630b8b2f7d4dc6a7d3484324ef8e
BLAKE2b-256 9752a9d8c684cf667cfab2a8c5c6fb4fc88be83fa7a48f015c6859a1ec50b762

See more details on using hashes here.

File details

Details for the file pyopenms-2.1.0-py3.3-win-amd64.egg.

File metadata

File hashes

Hashes for pyopenms-2.1.0-py3.3-win-amd64.egg
Algorithm Hash digest
SHA256 0e0e4e91d183a71208c63dc2baef844bcdd2d2410576d85152a09ce460b4c561
MD5 1b35040cd3ebf9a24cfb8b800cab2d3b
BLAKE2b-256 c9af9cb6515af1dfb8168c4c5e36a6c060be55040eac799b0a8d8c76d1691d94

See more details on using hashes here.

File details

Details for the file pyopenms-2.1.0-py3.3-win32.egg.

File metadata

File hashes

Hashes for pyopenms-2.1.0-py3.3-win32.egg
Algorithm Hash digest
SHA256 063a78517eeca24a4ca41fb4664623e8de2773ec9199938164eaf9adab06537c
MD5 b267c271649e6a26365c65961ccfae92
BLAKE2b-256 fda4621b9a12d7c462a9ec418da0ec04720a1234271f4626f99072dc3f8cb842

See more details on using hashes here.

File details

Details for the file pyopenms-2.1.0-py2.7-win-amd64.egg.

File metadata

File hashes

Hashes for pyopenms-2.1.0-py2.7-win-amd64.egg
Algorithm Hash digest
SHA256 8e2de0dc6586542634c7f32df62456730ad7aeeb39db98e554fc9a1e1f24e5b4
MD5 dbd3daa547b74f53b4fae2d9cd55a12e
BLAKE2b-256 4ea549151888f9e4464b3a540d3c58b23cce4b4f3b357eec63860bbe05f56ad7

See more details on using hashes here.

File details

Details for the file pyopenms-2.1.0-py2.7-win32.egg.

File metadata

File hashes

Hashes for pyopenms-2.1.0-py2.7-win32.egg
Algorithm Hash digest
SHA256 e77582be21b4296720fa39150c49b13684436fd849581f0306529a92f83784c1
MD5 ecfcbdeb1399e588b691484b9ad046c3
BLAKE2b-256 6f913c9193bf1c19a7b998929eae6e62c29a52246b1c336542200925d3f37caf

See more details on using hashes here.

File details

Details for the file pyopenms-2.1.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyopenms-2.1.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 60c0d590ea817a379ddeb87aac33040b1919622ae135b82752cedad6345ce876
MD5 e03ec3045960d9c2fd0d272be15bf972
BLAKE2b-256 1d2ec9a152ed6115540d0eac4b31b7f97644efbaf7ebe3c77527a76f67269c06

See more details on using hashes here.

File details

Details for the file pyopenms-2.1.0-cp34-cp34m-win_amd64.whl.

File metadata

File hashes

Hashes for pyopenms-2.1.0-cp34-cp34m-win_amd64.whl
Algorithm Hash digest
SHA256 b6267c59a37447344ae87783623b9c7952d1b0905a2a3361b697683afbe9c3e8
MD5 5198b345232052b28080ad1a0f96bd3f
BLAKE2b-256 4fcecfbb0531d2949c24a9765340338619d6bf227b07d4afed0348fcb657ff5b

See more details on using hashes here.

File details

Details for the file pyopenms-2.1.0-cp34-cp34m-win32.whl.

File metadata

File hashes

Hashes for pyopenms-2.1.0-cp34-cp34m-win32.whl
Algorithm Hash digest
SHA256 211013618fecfdbcbf7503c4a98f379672bc3f4a134e2f637d0d34bd28ca175d
MD5 da976fb4fcb39105592d348aa90880d4
BLAKE2b-256 206114a3661823c9a044da967d5f926d3d20488819b17ffcf075701048e70438

See more details on using hashes here.

File details

Details for the file pyopenms-2.1.0-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyopenms-2.1.0-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c8e5af475b498f28fa087d5ed48668c2ade765a91b44a17cc65fe9c22e5a53b6
MD5 62c905b642d8f11f795821f02650afec
BLAKE2b-256 2191950d88983b69286064b336adc2e6e76b7b0e94328f2d66a461a3526cfc40

See more details on using hashes here.

File details

Details for the file pyopenms-2.1.0-cp33-cp33m-win_amd64.whl.

File metadata

File hashes

Hashes for pyopenms-2.1.0-cp33-cp33m-win_amd64.whl
Algorithm Hash digest
SHA256 a2b9ffcab857a292991444ee50ca160f995f596bf35a2f3a089ab6bdd767dd48
MD5 30df584f19034ef467fc44ccc5be0411
BLAKE2b-256 045881aaa38e406e81001ec42e9ee7751880f052a482021a577ea5166c875b11

See more details on using hashes here.

File details

Details for the file pyopenms-2.1.0-cp33-cp33m-win32.whl.

File metadata

File hashes

Hashes for pyopenms-2.1.0-cp33-cp33m-win32.whl
Algorithm Hash digest
SHA256 32ab9dc3b11116ff548841a75ebb4465de9f26956db96cc8f35ce5837affd378
MD5 fffeafd888a59c54a9cc4e34ac36b40d
BLAKE2b-256 9f8f7cc478566b6dfd4c0a0911bfd5a9ca21e8c848cc93edfe79637bf10ff3c2

See more details on using hashes here.

File details

Details for the file pyopenms-2.1.0-cp27-none-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyopenms-2.1.0-cp27-none-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6add8f361018bdb8326ea64f3ce5ad49040bedbbb1f9c614f03bd5dee32f6d82
MD5 3c886f9bb4a2569c0d3c8fe29fbff5e1
BLAKE2b-256 dedb7df2929ee9fad94aa9e57071bbca246a42069c0307305e00ce3f2c5e0c1d

See more details on using hashes here.

File details

Details for the file pyopenms-2.1.0-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for pyopenms-2.1.0-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 69d52272441271ef8960e8628bc51646b1f2453c421049cc511b04bf9d46ab14
MD5 ee7ef70ccfce5a1fd93d23b3af693fb8
BLAKE2b-256 9f2cd9f4a479b5d610f0402627531ff72d0eaff03112e57f32d1be71a4c027dc

See more details on using hashes here.

File details

Details for the file pyopenms-2.1.0-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for pyopenms-2.1.0-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 66efebe004ef967f68c58bd3f75487571f80fe291eaadf708e6c4c906d4a75f3
MD5 b7983500ca3d3f58746ead06b8358025
BLAKE2b-256 7eaaa9d0055817016026c1744ec08b210e043f16431d67f59dd8b3cb87b49bc5

See more details on using hashes here.

File details

Details for the file pyopenms-2.1.0-cp27-cp27m-macosx_10_11_intel.whl.

File metadata

File hashes

Hashes for pyopenms-2.1.0-cp27-cp27m-macosx_10_11_intel.whl
Algorithm Hash digest
SHA256 af5ca4abd612ea9ed67edbbd00b9bbd913652c54caa9a6821d24adb388f99411
MD5 1a8aa7fa6f0694a12012e7db420c1469
BLAKE2b-256 df129774b65e9dd84d8dd6082722d2767a22f6b7f5b01cb31b8d9cdb69d05441

See more details on using hashes here.

File details

Details for the file pyopenms-2.1.0-cp27-cp27m-macosx_10_9_intel.whl.

File metadata

File hashes

Hashes for pyopenms-2.1.0-cp27-cp27m-macosx_10_9_intel.whl
Algorithm Hash digest
SHA256 64714af540244223e866c867a9940f5d01867700dcd4b3db3700d1c04e2afa5a
MD5 a99dea73e618384c565d570e0ef529d5
BLAKE2b-256 433c927f4b01760d4f533ec67418ceaf8209e8553139a7162f1445cb4a1f299f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page