Pure Python optical flow: Horn-Schunck
Project description
Optical Flow: Horn-Schunck
Python implementation of optical flow estimation using only the Scipy stack for:
- Horn Schunck
Lucas-Kanade is also possible in the future, let us know if you're interested in Lucas Kanade.
Install
python -m pip install -e .
optionally, to run self-tests:
python -m pip install -e .[tests]
pytest -v
Examples
The program scripts expect directory
glob pattern
imageio loads a wide varity of images and video.
Box:
python HornSchunck.py src/pyoptflow/data/tests/box box*.bmp
Office: all time steps:
python HornSchunck.py src/pyoptflow/data/tests/office office*.bmp
or just the first 2 time steps:
python HornSchunck.py src/pyoptflow/data/tests/office office.[0-2].bmp
Rubic:
python HornSchunck.py src/pyoptflow/data/tests/rubic rubic*.bmp
Sphere
python HornSchunck.py src/pyoptflow/data/tests/sphere sphere*.bmp
Compare: Matlab Computer Vision toolbox: in matlab, similar method in Octave and a comparison plot using Matlab Computer Vision toolbox.
Reference:Inspiration
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pyoptflow-1.4.0.tar.gz
(8.6 kB
view details)
File details
Details for the file pyoptflow-1.4.0.tar.gz
.
File metadata
- Download URL: pyoptflow-1.4.0.tar.gz
- Upload date:
- Size: 8.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0e91eb67c56cae6fc8d52d52b1b23eb495089668cf965f11f60eb5f11df778b7 |
|
MD5 | 9232ed8ecc25720caedc60a9e2f474cf |
|
BLAKE2b-256 | 686fa91dd3f83e7b97822883ea942913fa4a46ec10943c2fad90a0686b3f7003 |