Skip to main content

Python tools for simulation of optical systems

Project description

pyOpTools

pyOpTools is a set of packages that allow the simulation of optical systems by raytracing as well as some calculations involving wavefronts, currently under development. It is written in Python and Cython, and is being developed by the technological development group of Combustión Ingenieros S.A.S, and the applied optics group of the Universidad Nacional de Colombia.

At the moment the documentation is being created, you can find the work in progress here

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyoptools-0.2.6-cp311-cp311-win_amd64.whl (12.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyoptools-0.2.6-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

pyoptools-0.2.6-cp311-cp311-macosx_10_9_x86_64.whl (12.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyoptools-0.2.6-cp310-cp310-win_amd64.whl (12.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyoptools-0.2.6-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

pyoptools-0.2.6-cp310-cp310-macosx_10_9_x86_64.whl (12.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyoptools-0.2.6-cp39-cp39-win_amd64.whl (12.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyoptools-0.2.6-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

pyoptools-0.2.6-cp39-cp39-macosx_10_9_x86_64.whl (12.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyoptools-0.2.6-cp38-cp38-win_amd64.whl (12.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyoptools-0.2.6-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

pyoptools-0.2.6-cp38-cp38-macosx_10_9_x86_64.whl (12.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyoptools-0.2.6-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyoptools-0.2.6-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ef52578c6df04fbea60eef86ee9e020771c094b65d0752178008903704029fa2
MD5 30babcd2e109622a153c16b5862479c2
BLAKE2b-256 6ffaeef4f429a9af7e0252da79c43b1ce54007d34264e5bae211bfa6215d8204

See more details on using hashes here.

File details

Details for the file pyoptools-0.2.6-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyoptools-0.2.6-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f31dc6f9fea15a163c5d47d0bff3060b4d5f65b805aeda42fddc1576f423aab3
MD5 28074355fe70e6d3733ba55485cda80e
BLAKE2b-256 1fd4792d069d421ac65163110c09ccca9f68c8c78f0c93d1bbdda8bd56396079

See more details on using hashes here.

File details

Details for the file pyoptools-0.2.6-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyoptools-0.2.6-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0c4cbd9e3bcdf39c3d097325d9d8c965e81cbfb1565fce159d70a7597e5dd875
MD5 fbb4886f4f6f1ff8c5b37de631f4e245
BLAKE2b-256 03edb2897ddc7e49bd1802dd3c2dab4d2f257b60287498e4809bf902c6842094

See more details on using hashes here.

File details

Details for the file pyoptools-0.2.6-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyoptools-0.2.6-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e2df20b92d75ac5a1b35d45f3cff5fa11279b07b41ec3c7cd76c917757ab8f4b
MD5 5c5dc0ec83aec8f08c45b11e72fe9e21
BLAKE2b-256 64c6049696e2ddd5bfd22a9a166a7214509098f9f8bbef5b1e99c185b6d24551

See more details on using hashes here.

File details

Details for the file pyoptools-0.2.6-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyoptools-0.2.6-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e3e713a196e9157c33ae9fa5fc215c9e5ce1be252379b7d6c9a417a650acb672
MD5 f7fe6b336aba65e815eb33e611f3b1cf
BLAKE2b-256 aef4e536a71b373da53ed263952c1a82d10e34b1e7689a1a1b091d3fdbfdc2fa

See more details on using hashes here.

File details

Details for the file pyoptools-0.2.6-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyoptools-0.2.6-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c65226493203c4505e13191fe42e656a9539344fd8955e3e2ad031fed60b2780
MD5 6886b1c4f5cf3d0c212fd1ad95d02b79
BLAKE2b-256 e7629ae89e720125eaf3860c6f07d765ce1503d682ac5e52222338e7549cbede

See more details on using hashes here.

File details

Details for the file pyoptools-0.2.6-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyoptools-0.2.6-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 12.1 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for pyoptools-0.2.6-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0ff7ca160d668ab714790679c3bf6600ff46de83593c4e6ede4b6cc171755d6f
MD5 577f56c8600632ca2999181ce8043ace
BLAKE2b-256 e2e8e549ee10900fc34b0827caeebe76eee32064f2cf9448eba4d146787e4e9a

See more details on using hashes here.

File details

Details for the file pyoptools-0.2.6-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyoptools-0.2.6-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7dda137b9f590d3d1b273f830e8b96c7fa1c3f53f3a873623f081a3588322324
MD5 588a0272173057a12ed46959690b8a89
BLAKE2b-256 2bddc96ab85516835c9915f3e24a1e888b36f76e87e860432212b21f056f81c9

See more details on using hashes here.

File details

Details for the file pyoptools-0.2.6-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyoptools-0.2.6-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3e735f97955222096f8a991cb5995de8c9ed0402eca8c80adae2e37d869eb0e8
MD5 919c5a5808b59a7f556588c3d15812bc
BLAKE2b-256 873a5f9586d88732b98627bc37a5c99b7642193c05a1aa92e9c56505904c4f50

See more details on using hashes here.

File details

Details for the file pyoptools-0.2.6-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyoptools-0.2.6-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 12.3 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for pyoptools-0.2.6-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5bd3f556ae13189533c259e710b1b7f0ffe4448f991644961bfb8d7dc1d9bc18
MD5 b8a34fdff546589808aaf9881abe947e
BLAKE2b-256 ae35910e76d931160887a5ddaf579891f8c16076e10fa3e433ced606fe0aca19

See more details on using hashes here.

File details

Details for the file pyoptools-0.2.6-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyoptools-0.2.6-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3ec690e5777757b43d441c071153fa9d25e25229c5aa74a0bd34d6f68c9cec26
MD5 8c986ec8ae2d0c48c95a050206128b0a
BLAKE2b-256 8965ba8562df11661d3e4721cf4ba68bcc990a9aed7ab49e4d4b245b6cb30615

See more details on using hashes here.

File details

Details for the file pyoptools-0.2.6-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyoptools-0.2.6-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5ae3fd1396daf993bd80e09729344856feedf3f509abded036a545e161cf081b
MD5 246ba56b6d0aa79a17ecdf865f243bec
BLAKE2b-256 ca55fb460190acc46f7baf793ca96ea7dd979b57f5925229e05501da653c7e0f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page