Python Implementation of Bertsimas's paper Optimal Classification Trees.
Project description
# pyoptree
Python Optimal Tree
### Install
#### First install pyoptree through pip
```
pip3 install pyoptree
```
#### Then install solver (IMPORTANT!)
The user needs to have **IBM Cplex** or **Gurobi** installed on their computer, and make sure that **the executable has been added to PATH environment variable** (i.e. command `cplex` or `gurobi` can be run on terminal).
### Example
```python
import pandas as pd
from pyoptree.optree import OptimalHyperTreeModel, OptimalTreeModel
data = pd.DataFrame({
"index": ['A', 'C', 'D', 'E', 'F'],
"x1": [1, 2, 2, 2, 3],
"x2": [1, 2, 1, 0, 1],
"y": [1, 1, -1, -1, -1]
})
test_data = pd.DataFrame({
"index": ['A', 'B', 'C', 'D', 'E', 'F', 'G'],
"x1": [1, 1, 2, 2, 2, 3, 3],
"x2": [1, 2, 2, 1, 0, 1, 0],
"y": [1, 1, 1, -1, -1, -1, -1]
})
model = OptimalHyperTreeModel(["x1", "x2"], "y", tree_depth=2, N_min=1, alpha=0.1, solver_name="cplex")
model.train(data)
print(model.predict(test_data))
```
### Todos
1. Use the solution from the previous depth tree as a "Warm Start" to speed up the time to solve the Mixed Integer Linear Programming (MILP); (Done √)
2. Use the solution from sklearn's CART to give a good initial solution (Done √);
Python Optimal Tree
### Install
#### First install pyoptree through pip
```
pip3 install pyoptree
```
#### Then install solver (IMPORTANT!)
The user needs to have **IBM Cplex** or **Gurobi** installed on their computer, and make sure that **the executable has been added to PATH environment variable** (i.e. command `cplex` or `gurobi` can be run on terminal).
### Example
```python
import pandas as pd
from pyoptree.optree import OptimalHyperTreeModel, OptimalTreeModel
data = pd.DataFrame({
"index": ['A', 'C', 'D', 'E', 'F'],
"x1": [1, 2, 2, 2, 3],
"x2": [1, 2, 1, 0, 1],
"y": [1, 1, -1, -1, -1]
})
test_data = pd.DataFrame({
"index": ['A', 'B', 'C', 'D', 'E', 'F', 'G'],
"x1": [1, 1, 2, 2, 2, 3, 3],
"x2": [1, 2, 2, 1, 0, 1, 0],
"y": [1, 1, 1, -1, -1, -1, -1]
})
model = OptimalHyperTreeModel(["x1", "x2"], "y", tree_depth=2, N_min=1, alpha=0.1, solver_name="cplex")
model.train(data)
print(model.predict(test_data))
```
### Todos
1. Use the solution from the previous depth tree as a "Warm Start" to speed up the time to solve the Mixed Integer Linear Programming (MILP); (Done √)
2. Use the solution from sklearn's CART to give a good initial solution (Done √);
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pyoptree-1.0.3.tar.gz
(14.4 kB
view details)
Built Distribution
pyoptree-1.0.3-py3-none-any.whl
(16.9 kB
view details)
File details
Details for the file pyoptree-1.0.3.tar.gz
.
File metadata
- Download URL: pyoptree-1.0.3.tar.gz
- Upload date:
- Size: 14.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.18.4 setuptools/40.4.3 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cda9fab77ff204916451f941d674bed1646107ed160ad6c890a5e0f71059b8a3 |
|
MD5 | 19bc841cb0f9ab7caf5438ad383178f1 |
|
BLAKE2b-256 | 8812edd585dc1a0baa0729a62964d0b5dea6ec97b98a454475cf83dba8a9ca47 |
File details
Details for the file pyoptree-1.0.3-py3-none-any.whl
.
File metadata
- Download URL: pyoptree-1.0.3-py3-none-any.whl
- Upload date:
- Size: 16.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.18.4 setuptools/40.4.3 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e98b9d564da7c0dae9bc2065c2f1861d1dd84a5de142267ccf93a1f5431cc3a7 |
|
MD5 | 56d0e9e027a5ac1a7da534e5d330410f |
|
BLAKE2b-256 | 17cad2513a5ff2139fcec22b0a8e7d18a58083759769416096428b161cd9f213 |