Skip to main content

Python module to run and analyze benchmarks

Project description

Latest release on the Python Cheeseshop (PyPI) Build status of pyperf on Travis CI

The Python pyperf module is a toolkit to write, run and analyze benchmarks.

Features

  • Simple API to run reliable benchmarks

  • Automatically calibrate a benchmark for a time budget.

  • Spawn multiple worker processes.

  • Compute the mean and standard deviation.

  • Detect if a benchmark result seems unstable.

  • JSON format to store benchmark results.

  • Support multiple units: seconds, bytes and integer.

Usage

To run a benchmark use the pyperf timeit command (result written into bench.json):

$ python3 -m pyperf timeit '[1,2]*1000' -o bench.json
.....................
Mean +- std dev: 4.22 us +- 0.08 us

Or write a benchmark script bench.py:

#!/usr/bin/env python3
import pyperf

runner = pyperf.Runner()
runner.timeit(name="sort a sorted list",
              stmt="sorted(s, key=f)",
              setup="f = lambda x: x; s = list(range(1000))")

See the API docs for full details on the timeit function and the Runner class. To run the script and dump the results into a file named bench.json:

$ python3 bench.py -o bench.json

To analyze benchmark results use the pyperf stats command:

$ python3 -m pyperf stats telco.json
Total duration: 29.2 sec
Start date: 2016-10-21 03:14:19
End date: 2016-10-21 03:14:53
Raw value minimum: 177 ms
Raw value maximum: 183 ms

Number of calibration run: 1
Number of run with values: 40
Total number of run: 41

Number of warmup per run: 1
Number of value per run: 3
Loop iterations per value: 8
Total number of values: 120

Minimum:         22.1 ms
Median +- MAD:   22.5 ms +- 0.1 ms
Mean +- std dev: 22.5 ms +- 0.2 ms
Maximum:         22.9 ms

  0th percentile: 22.1 ms (-2% of the mean) -- minimum
  5th percentile: 22.3 ms (-1% of the mean)
 25th percentile: 22.4 ms (-1% of the mean) -- Q1
 50th percentile: 22.5 ms (-0% of the mean) -- median
 75th percentile: 22.7 ms (+1% of the mean) -- Q3
 95th percentile: 22.9 ms (+2% of the mean)
100th percentile: 22.9 ms (+2% of the mean) -- maximum

Number of outlier (out of 22.0 ms..23.0 ms): 0

There’s also:

  • pyperf compare_to command tests if a difference is significant. It supports comparison between multiple benchmark suites (made of multiple benchmarks)

    $ python3 -m pyperf compare_to --table mult_list_py36.json mult_list_py37.json mult_list_py38.json
    +----------------+----------------+-----------------------+-----------------------+
    | Benchmark      | mult_list_py36 | mult_list_py37        | mult_list_py38        |
    +================+================+=======================+=======================+
    | [1]*1000       | 2.13 us        | 2.09 us: 1.02x faster | not significant       |
    +----------------+----------------+-----------------------+-----------------------+
    | [1,2]*1000     | 3.70 us        | 5.28 us: 1.42x slower | 3.18 us: 1.16x faster |
    +----------------+----------------+-----------------------+-----------------------+
    | [1,2,3]*1000   | 4.61 us        | 6.05 us: 1.31x slower | 4.17 us: 1.11x faster |
    +----------------+----------------+-----------------------+-----------------------+
    | Geometric mean | (ref)          | 1.22x slower          | 1.09x faster          |
    +----------------+----------------+-----------------------+-----------------------+
  • pyperf system tune command to tune your system to run stable benchmarks.

  • Automatically collect metadata on the computer and the benchmark: use the pyperf metadata command to display them, or the pyperf collect_metadata command to manually collect them.

  • --track-memory and --tracemalloc options to track the memory usage of a benchmark.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyperf-2.1.0.tar.gz (202.1 kB view details)

Uploaded Source

Built Distribution

pyperf-2.1.0-py2.py3-none-any.whl (87.4 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pyperf-2.1.0.tar.gz.

File metadata

  • Download URL: pyperf-2.1.0.tar.gz
  • Upload date:
  • Size: 202.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.9.1

File hashes

Hashes for pyperf-2.1.0.tar.gz
Algorithm Hash digest
SHA256 1257d673d89fdcdbaec8077afeb365e7a94739c1b263572b09403cac25708ad3
MD5 16f3897f36de833b2b0deaca271dd1cb
BLAKE2b-256 56ddb90cdcfbb7a75495edcf871fc13fa7a8d8ad5df237a7dd66a85a88073913

See more details on using hashes here.

File details

Details for the file pyperf-2.1.0-py2.py3-none-any.whl.

File metadata

  • Download URL: pyperf-2.1.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 87.4 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.9.1

File hashes

Hashes for pyperf-2.1.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 ca7f13c922e6a16ce2d69ac86b243c8faf5183da5b346eb064385e0de4d8c18d
MD5 c733ed6692d0f5046c59b172f232cbe4
BLAKE2b-256 26c52745be73e9417934b8d32d3291dc3dfec55c426f2aa17124313e2fb19ec9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page