Skip to main content

Python module to run and analyze benchmarks

Project description

Latest release on the Python Cheeseshop (PyPI) Build status of pyperf on GitHub Actions

The Python pyperf module is a toolkit to write, run and analyze benchmarks.

Features

  • Simple API to run reliable benchmarks

  • Automatically calibrate a benchmark for a time budget.

  • Spawn multiple worker processes.

  • Compute the mean and standard deviation.

  • Detect if a benchmark result seems unstable.

  • JSON format to store benchmark results.

  • Support multiple units: seconds, bytes and integer.

Usage

To run a benchmark use the pyperf timeit command (result written into bench.json):

$ python3 -m pyperf timeit '[1,2]*1000' -o bench.json
.....................
Mean +- std dev: 4.22 us +- 0.08 us

Or write a benchmark script bench.py:

#!/usr/bin/env python3
import pyperf

runner = pyperf.Runner()
runner.timeit(name="sort a sorted list",
              stmt="sorted(s, key=f)",
              setup="f = lambda x: x; s = list(range(1000))")

See the API docs for full details on the timeit function and the Runner class. To run the script and dump the results into a file named bench.json:

$ python3 bench.py -o bench.json

To analyze benchmark results use the pyperf stats command:

$ python3 -m pyperf stats telco.json
Total duration: 29.2 sec
Start date: 2016-10-21 03:14:19
End date: 2016-10-21 03:14:53
Raw value minimum: 177 ms
Raw value maximum: 183 ms

Number of calibration run: 1
Number of run with values: 40
Total number of run: 41

Number of warmup per run: 1
Number of value per run: 3
Loop iterations per value: 8
Total number of values: 120

Minimum:         22.1 ms
Median +- MAD:   22.5 ms +- 0.1 ms
Mean +- std dev: 22.5 ms +- 0.2 ms
Maximum:         22.9 ms

  0th percentile: 22.1 ms (-2% of the mean) -- minimum
  5th percentile: 22.3 ms (-1% of the mean)
 25th percentile: 22.4 ms (-1% of the mean) -- Q1
 50th percentile: 22.5 ms (-0% of the mean) -- median
 75th percentile: 22.7 ms (+1% of the mean) -- Q3
 95th percentile: 22.9 ms (+2% of the mean)
100th percentile: 22.9 ms (+2% of the mean) -- maximum

Number of outlier (out of 22.0 ms..23.0 ms): 0

There’s also:

  • pyperf compare_to command tests if a difference is significant. It supports comparison between multiple benchmark suites (made of multiple benchmarks)

    $ python3 -m pyperf compare_to --table mult_list_py36.json mult_list_py37.json mult_list_py38.json
    +----------------+----------------+-----------------------+-----------------------+
    | Benchmark      | mult_list_py36 | mult_list_py37        | mult_list_py38        |
    +================+================+=======================+=======================+
    | [1]*1000       | 2.13 us        | 2.09 us: 1.02x faster | not significant       |
    +----------------+----------------+-----------------------+-----------------------+
    | [1,2]*1000     | 3.70 us        | 5.28 us: 1.42x slower | 3.18 us: 1.16x faster |
    +----------------+----------------+-----------------------+-----------------------+
    | [1,2,3]*1000   | 4.61 us        | 6.05 us: 1.31x slower | 4.17 us: 1.11x faster |
    +----------------+----------------+-----------------------+-----------------------+
    | Geometric mean | (ref)          | 1.22x slower          | 1.09x faster          |
    +----------------+----------------+-----------------------+-----------------------+
  • pyperf system tune command to tune your system to run stable benchmarks.

  • Automatically collect metadata on the computer and the benchmark: use the pyperf metadata command to display them, or the pyperf collect_metadata command to manually collect them.

  • --track-memory and --tracemalloc options to track the memory usage of a benchmark.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyperf-2.6.1.tar.gz (221.7 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

pyperf-2.6.1-py3-none-any.whl (139.7 kB view details)

Uploaded Python 3

File details

Details for the file pyperf-2.6.1.tar.gz.

File metadata

  • Download URL: pyperf-2.6.1.tar.gz
  • Upload date:
  • Size: 221.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for pyperf-2.6.1.tar.gz
Algorithm Hash digest
SHA256 171aea69b8efde61210e512166d8764e7765a9c7678b768052174b01f349f247
MD5 8eb54a590ba519bafd34746607e8a601
BLAKE2b-256 670ad842997a16cc52849470940d8d107162d3d15f8ab9a015f6cd321f6cb061

See more details on using hashes here.

File details

Details for the file pyperf-2.6.1-py3-none-any.whl.

File metadata

  • Download URL: pyperf-2.6.1-py3-none-any.whl
  • Upload date:
  • Size: 139.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for pyperf-2.6.1-py3-none-any.whl
Algorithm Hash digest
SHA256 9f81bf78335428ddf9845f1388dfb56181e744a69e93d8506697a56dc67b6d5f
MD5 9ef99a8056643a176b53b6d749f7660d
BLAKE2b-256 65730492578cbde4c40f8f0d13db2827cc04ba54bcb875d2ee9d4b77ef3c5d28

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page