Skip to main content

python-based Parameter EStimation TOolbox

Project description

pyPESTO - Parameter EStimation TOolbox for python

pyPESTO logo

pyPESTO is a widely applicable and highly customizable toolbox for parameter estimation.

PyPI CI Coverage Documentation DOI

Feature overview

pyPESTO features include:

  • Multi-start local optimization
  • Profile computation
  • Result visualization
  • Interface to AMICI for efficient simulation and sensitivity analysis of ordinary differential equation (ODE) models (example)
  • Parameter estimation pipeline for systems biology problems specified in SBML and PEtab (example)
  • Parameter estimation with ordinal data as described in Schmiester et al. (2020) and Schmiester et al. (2021). (example)
  • Parameter estimation with censored data. (example)
  • Parameter estimation with nonlinear-monotone data. (example)

Quick install

The simplest way to install pyPESTO is via pip:

pip3 install pypesto

More information is available here: https://pypesto.readthedocs.io/en/latest/install.html

Documentation

The documentation is hosted on readthedocs.io: https://pypesto.readthedocs.io

Examples

Multiple use cases are discussed in the documentation. In particular, there are jupyter notebooks in the doc/example directory.

Contributing

We are happy about any contributions. For more information on how to contribute to pyPESTO check out https://pypesto.readthedocs.io/en/latest/contribute.html

How to Cite

Citeable DOI for the latest pyPESTO release: DOI

When using pyPESTO in your project, please cite

  • Schälte, Y., Fröhlich, F., Jost, P. J., Vanhoefer, J., Pathirana, D., Stapor, P., Lakrisenko, P., Wang, D., Raimúndez, E., Merkt, S., Schmiester, L., Städter, P., Grein, S., Dudkin, E., Doresic, D., Weindl, D., & Hasenauer, J. (2023). pyPESTO: A modular and scalable tool for parameter estimation for dynamic models, Bioinformatics, 2023, btad711, doi:10.1093/bioinformatics/btad711

When presenting work that employs pyPESTO, feel free to use one of the icons in doc/logo/:

AMICI Logo

There is a list of publications using pyPESTO. If you used pyPESTO in your work, we are happy to include your project, please let us know via a GitHub issue.

References

pyPESTO supersedes PESTO a parameter estimation toolbox for MATLAB, whose development is discontinued.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pypesto-0.4.2.tar.gz (300.5 kB view details)

Uploaded Source

File details

Details for the file pypesto-0.4.2.tar.gz.

File metadata

  • Download URL: pypesto-0.4.2.tar.gz
  • Upload date:
  • Size: 300.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.8

File hashes

Hashes for pypesto-0.4.2.tar.gz
Algorithm Hash digest
SHA256 d4c2409768294a06b0a2b2cef0e03843e0fee6102fb414ed235090509f446aab
MD5 d0b695f3e84f8147a40169af2eae8b6f
BLAKE2b-256 1985a35130e4fcca1966e388e6bc6a89634e245b8a28239632368878559511cf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page