Skip to main content

python-based Parameter EStimation TOolbox

Project description

pyPESTO - Parameter EStimation TOolbox for python

pyPESTO logo

pyPESTO is a widely applicable and highly customizable toolbox for parameter estimation.

PyPI CI Coverage Documentation DOI

Feature overview

pyPESTO features include:

  • Multi-start local optimization
  • Profile computation
  • Result visualization
  • Interface to AMICI for efficient simulation and sensitivity analysis of ordinary differential equation (ODE) models (example)
  • Parameter estimation pipeline for systems biology problems specified in SBML and PEtab (example)
  • Parameter estimation with ordinal data as described in Schmiester et al. (2020) and Schmiester et al. (2021). (example)
  • Parameter estimation with censored data. (example)
  • Parameter estimation with nonlinear-monotone data. (example)

Quick install

The simplest way to install pyPESTO is via pip:

pip3 install pypesto

More information is available here: https://pypesto.readthedocs.io/en/latest/install.html

Documentation

The documentation is hosted on readthedocs.io: https://pypesto.readthedocs.io

Examples

Multiple use cases are discussed in the documentation. In particular, there are jupyter notebooks in the doc/example directory.

Contributing

We are happy about any contributions. For more information on how to contribute to pyPESTO check out https://pypesto.readthedocs.io/en/latest/contribute.html

How to Cite

Citeable DOI for the latest pyPESTO release: DOI

When using pyPESTO in your project, please cite

  • Schälte, Y., Fröhlich, F., Jost, P. J., Vanhoefer, J., Pathirana, D., Stapor, P., Lakrisenko, P., Wang, D., Raimúndez, E., Merkt, S., Schmiester, L., Städter, P., Grein, S., Dudkin, E., Doresic, D., Weindl, D., & Hasenauer, J. (2023). pyPESTO: A modular and scalable tool for parameter estimation for dynamic models, Bioinformatics, 2023, btad711, doi:10.1093/bioinformatics/btad711

When presenting work that employs pyPESTO, feel free to use one of the icons in doc/logo/:

AMICI Logo

There is a list of publications using pyPESTO. If you used pyPESTO in your work, we are happy to include your project, please let us know via a GitHub issue.

References

pyPESTO supersedes PESTO a parameter estimation toolbox for MATLAB, whose development is discontinued.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pypesto-0.5.1.tar.gz (314.3 kB view details)

Uploaded Source

File details

Details for the file pypesto-0.5.1.tar.gz.

File metadata

  • Download URL: pypesto-0.5.1.tar.gz
  • Upload date:
  • Size: 314.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.8

File hashes

Hashes for pypesto-0.5.1.tar.gz
Algorithm Hash digest
SHA256 724fb1b01b9811b61b9ac11101ca922ee20abea711894d5cb2fe75848f7ef295
MD5 268051b2087413fd25315cb3ede5c29c
BLAKE2b-256 e06edf7d5602d834425e54f0a682223596451c5ad9f1ef9e96335548e32593ec

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page