python-based Parameter EStimation TOolbox
Project description
pyPESTO - Parameter EStimation TOolbox for python
pyPESTO is a widely applicable and highly customizable toolbox for parameter estimation.
Feature overview
Feature overview of pyPESTO. Figure taken from the Bioinformatics publication.
pyPESTO features include:
- Parameter estimation interfacing multiple optimization algorithms including multi-start local and global optimization. (example, overview of optimizers)
- Interface to multiple simulators including
- Uncertainty quantification using various methods:
- Complete parameter estimation pipeline for systems biology problems specified in SBML and PEtab. (example)
- Parameter estimation pipelines for different modes of data:
- Relative (scaled and offset) data as described in Schmiester et al. (2020). (example)
- Ordinal data as described in Schmiester et al. (2020) and Schmiester et al. (2021). (example)
- Censored data. (example)
- Semiquantitative data as described in Doresic et al. (2024). (example)
- Model selection. (example)
- Various visualization methods to analyze parameter estimation results.
Quick install
The simplest way to install pyPESTO is via pip:
pip3 install pypesto
More information is available here: https://pypesto.readthedocs.io/en/latest/install.html
Documentation
The documentation is hosted on readthedocs.io: https://pypesto.readthedocs.io
Examples
Multiple use cases are discussed in the documentation. In particular, there are jupyter notebooks in the doc/example directory.
Contributing
We are happy about any contributions. For more information on how to contribute to pyPESTO check out https://pypesto.readthedocs.io/en/latest/contribute.html
How to Cite
Citeable DOI for the latest pyPESTO release:
When using pyPESTO in your project, please cite
- Schälte, Y., Fröhlich, F., Jost, P. J., Vanhoefer, J., Pathirana, D., Stapor, P., Lakrisenko, P., Wang, D., Raimúndez, E., Merkt, S., Schmiester, L., Städter, P., Grein, S., Dudkin, E., Doresic, D., Weindl, D., & Hasenauer, J. (2023). pyPESTO: A modular and scalable tool for parameter estimation for dynamic models, Bioinformatics, 2023, btad711, doi:10.1093/bioinformatics/btad711
When presenting work that employs pyPESTO, feel free to use one of the icons in doc/logo/:
There is a list of publications using pyPESTO. If you used pyPESTO in your work, we are happy to include your project, please let us know via a GitHub issue.
References
pyPESTO supersedes PESTO a parameter estimation toolbox for MATLAB, whose development is discontinued.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pypesto-0.5.4.tar.gz
.
File metadata
- Download URL: pypesto-0.5.4.tar.gz
- Upload date:
- Size: 335.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 354993c647cff796d00daaf5e63c6d96d60a091a69bb8e224ae9cb1cb651482b |
|
MD5 | c521d7f85b9a0b2f1ebb427ba2f5c4c2 |
|
BLAKE2b-256 | 19ffb0d5a8d4a964b148aa9ec1b3b7a97b45b29dad8a4826a9c1ed34ee3fc33c |
File details
Details for the file pypesto-0.5.4-py3-none-any.whl
.
File metadata
- Download URL: pypesto-0.5.4-py3-none-any.whl
- Upload date:
- Size: 411.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e98ee6a3c6f0b99f2edc010578fb3c24540febb7753b48d9f1346d3ee52ced19 |
|
MD5 | dfd66a6c1f14a50075888c906313bbc3 |
|
BLAKE2b-256 | 7b41fe62e834a3e3a863db73565483a5ab27fa258583d874edf4f3aee74f8568 |