Skip to main content

Pypete - Python Performance Tests

Project description

This plugin helps writing performance tests in traditional nosetests way. To turn it use the --with-pypete argument in running nosetests in command line.

Plugin run tests number times and this experiment is repeated repeat times. So for measurement test will be ran times x repeat times. If number equals 0, plugin computes optimal number of tests so the time of each experiment is bigger than threshold.

I recommend to use PrettyTable for better overview of test results. You can select file, where the results will be stored in json format. With file and prettytable you can see comparison of current, last, best and worst run of tests (best and worst are according to avg value).

You can access all source codes at my Github.

Install

pip install pypete

Example of usage:

$ nosetests --with-pypete --pypete-prettytable --pypete-file pypete.json tests/tests.py
F..F..
======================================================================
FAIL: test_fail (tests.BasicTest)
----------------------------------------------------------------------
Traceback (most recent call last):
  File "/home/psebek/projects/pypete/tests/tests.py", line 18, in test_fail
    self.assertTrue(False)
AssertionError: False is not true

======================================================================
FAIL: test_timed (tests.BasicTest)
----------------------------------------------------------------------
Traceback (most recent call last):
  File "/usr/lib/python2.7/site-packages/nose/tools/nontrivial.py", line 100, in newfunc
    raise TimeExpired("Time limit (%s) exceeded" % limit)
TimeExpired: Time limit (0.001) exceeded

Pypete results:
repeat = 3 and number = 0
test_fail (tests.BasicTest):
+--------+-------------+----------+----------+-----------+
| Metric | current [s] | last [s] | best [s] | worst [s] |
+--------+-------------+----------+----------+-----------+
|  best  |   0.000034  | 0.000033 | 0.000033 |  0.000033 |
|  avg   |   0.000037  | 0.000033 | 0.000033 |  0.000036 |
| worst  |   0.000039  | 0.000034 | 0.000034 |  0.000040 |
+--------+-------------+----------+----------+-----------+
test_time (tests.BasicTest):
+--------+-------------+----------+----------+-----------+
| Metric | current [s] | last [s] | best [s] | worst [s] |
+--------+-------------+----------+----------+-----------+
|  best  |   0.001184  | 0.001174 | 0.001158 |  0.001193 |
|  avg   |   0.001186  | 0.001184 | 0.001176 |  0.001193 |
| worst  |   0.001189  | 0.001189 | 0.001196 |  0.001193 |
+--------+-------------+----------+----------+-----------+
test_time2 (tests.BasicTest):
+--------+-------------+----------+----------+-----------+
| Metric | current [s] | last [s] | best [s] | worst [s] |
+--------+-------------+----------+----------+-----------+
|  best  |   0.002216  | 0.002229 | 0.002144 |  0.002257 |
|  avg   |   0.002237  | 0.002238 | 0.002179 |  0.002276 |
| worst  |   0.002252  | 0.002245 | 0.002201 |  0.002302 |
+--------+-------------+----------+----------+-----------+
test_timed (tests.BasicTest):
+--------+-------------+----------+----------+-----------+
| Metric | current [s] | last [s] | best [s] | worst [s] |
+--------+-------------+----------+----------+-----------+
|  best  |   0.010448  | 0.010492 | 0.010442 |  0.010490 |
|  avg   |   0.010465  | 0.010541 | 0.010470 |  0.010645 |
| worst  |   0.010474  | 0.010621 | 0.010492 |  0.010751 |
+--------+-------------+----------+----------+-----------+
tests.test_arguments(0.001,):
+--------+-------------+----------+----------+-----------+
| Metric | current [s] | last [s] | best [s] | worst [s] |
+--------+-------------+----------+----------+-----------+
|  best  |   0.001188  | 0.001210 | 0.001150 |  0.001205 |
|  avg   |   0.001202  | 0.001213 | 0.001186 |  0.001219 |
| worst  |   0.001213  | 0.001217 | 0.001205 |  0.001227 |
+--------+-------------+----------+----------+-----------+
tests.test_arguments(0.002,):
+--------+-------------+----------+----------+-----------+
| Metric | current [s] | last [s] | best [s] | worst [s] |
+--------+-------------+----------+----------+-----------+
|  best  |   0.002274  | 0.002250 | 0.002183 |  0.002250 |
|  avg   |   0.002280  | 0.002262 | 0.002204 |  0.002286 |
| worst  |   0.002288  | 0.002273 | 0.002222 |  0.002318 |
+--------+-------------+----------+----------+-----------+

----------------------------------------------------------------------
Ran 6 tests in 1.619s

FAILED (failures=2)

Project details


Release history Release notifications

This version
History Node

0.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
pypete-0.1.tar.gz (5.2 kB) Copy SHA256 hash SHA256 Source None Oct 12, 2014

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page