Skip to main content

An easy module for building data pipe in python.

Project description

# pypeup - Piping Up with Python

This is a simple python module to help you to build a data pipe in python.

## First Glance

Suppose you have a bunch of functions dealing with data of the same structure (e.g they are all `array`, `integer`, ...etc) and you want to pipe them up for complex computations, `pypeup` is here at your service.

With `pypeup`, you can write something like this:

```{python}
from pypeup import DataPipe

# Note that these two funtion all return the same data structure and their
# first arguments are all data.
# In this example, the data are all of type list.

def fun1(data, x):
"""
x: <number>
data: <list>
"""
return [a + x for a in data]

def fun2(data, ind):
"""
ind: <integer>
data: <list>
"""
return data[:min(ind, len(data) - 1)]

class MyPipe(DataPipe):
pass

my_pipe = MyPipe([1, 2, 3, 4, 5])
my_pipe.register(fun1) # Use register method to add any method you like
my_pipe.register(fun2) # for your data.

my_pipe.fun1(1).fun2(3).fun2(2).fun1(3) # Pipe the function up at your wish
my_pipe.data
# >>> [5, 6]
```

Also, you can build up the pipe by one class declairation:

```{python}
from pypeup import DataPipe
import numpy as np

class MyPipe2(DataPipe):

def add(self, x):
return self.data + x

def sub(self, x):
return self.data - x

def mul(self, x):
return self.data * x

pipe2 = MyPipe2(np.array([1, 2, 3]))
pipe2.add(3).sub(2).mul(4)
pipe2.data
# >>> np.array([8, 12, 16])
```

There are some limits on the functions which can be applied to `pypipe`.
See [Limits](https://github.com/dboyliao/pypipe#limits) for detail.

## Limits

As mentioned above, there are few limits on the functions that can be used with `pypeup`:

- All the functions' first argument must be `data`.
- It doesn't mean you have to name it as `data`, but you have to be sure that all the functions' first argument will hold the data you want to process.
- All the `data` must be of the same (or compatible) data structure or type.
- for example, they must be all `list`, `number`, `numpy.array`...etc.
- All the function must return the data which will be passed through the pipe.

## Installation

- run `git clone https://github.com/dboyliao/pypipe.git && cd pypipe`
- run `python setup.py install` to install the package.

## Tests

- If you haven't installed `nose` yet, run `pip install -r requirements.txt` first.
- run `nosetests`

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pypeup-0.2.tar.gz (2.8 kB view details)

Uploaded Source

File details

Details for the file pypeup-0.2.tar.gz.

File metadata

  • Download URL: pypeup-0.2.tar.gz
  • Upload date:
  • Size: 2.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pypeup-0.2.tar.gz
Algorithm Hash digest
SHA256 f1e8a3ef0d6c731fc5d9263c451e9a45bda6d6c24a833a7c43dc880f8dfc4e74
MD5 40b5cc6504883200c994ef92ecff5856
BLAKE2b-256 366c4fe63430ad7711032752be9c9e6dd54cdd448869d660e26146eeb1630712

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page