Skip to main content

Module for solving pharmacokinetic problems

Project description

PyPharm

1) Установка пакета

pip install pypharm  

2) Пример использования пакета для модели, где все параметры известны

Задана двухкамерная модель такого вида

graph LR
D((Доза D)) --> V1[Камера V1]
V1 -- k12 --> V2[Камера V2]
V2 -- k21 --> V1
V1 -- k10 --> Out(Выведение)

При этом, нам известны параметры модели

V1 V2 k12 K21 K10
228 629 0.4586 0.1919 0.0309

Создание и расчет модели при помощи пакета PyPharm

from PyPharm import BaseCompartmentModel  
  
model = BaseCompartmentModel([[0, 0.4586], [0.1919, 0]], [0.0309, 0], volumes=[228, 629])  
  
res = model(90, d=5700, compartment_number=0)  

res - Результат работы решателя scipy solve_iv

3) Пример использования пакета для модели, где все параметры неизвестны

Задана многокамерная модель такого вида

graph LR
Br(Мозг) --'Kbr-'--> Is[Межклетачное пространство]
Is --'Kbr+'-->Br
Is--'Kis-'-->B(Кровь)
B--'Kis+'-->Is
B--'Ke'-->Out1((Выведение))
B--'Ki+'-->I(Печень)
I--'Ki-'-->Out2((Выведение))
B--'Kh+'-->H(Сердце)
H--'Kh-'-->B

При этом, известен лишь параметр Ke=0.077

Создание и расчет модели при помощи пакета PyPharm, используя метод minimize:

from PyPharm import BaseCompartmentModel
import numpy as np
matrix = [[0, None, 0, 0, 0],
[None, 0, None, 0, 0],
[0, None, 0, None, None],
[0, 0, 0, 0, 0],
[0, 0, None, 0, 0]]
outputs = [0, 0, 0.077, None, 0]

model = BaseCompartmentModel(matrix, outputs)

model.load_optimization_data(
	teoretic_x=[0.25, 0.5, 1, 4, 8, 24],
	teoretic_y=[[0, 0, 11.2, 5.3, 5.42, 3.2], [268.5, 783.3, 154.6, 224.2, 92.6, 0], [342, 637, 466, 235, 179, 158]],
	know_compartments=[0, 3, 4],
	c0=[0, 0, 20000, 0, 0]
)

x_min = [1.5, 0.01, 0.5, 0.0001, 0.1, 0.1, 4, 3]
x_max = [2.5, 0.7, 1.5, 0.05, 0.5, 0.5, 7, 5]
x0 = np.random.uniform(x_min, x_max)
bounds = ((1.5, 2.5), (0.01, 0.7), (0.5, 1.5), (0.0001, 0.05), (0.1, 0.5), (0.1, 0.5), (4, 7), (3, 5))

model.optimize(
	bounds=bounds,
	x0=x0,
	options={'disp': True}
)

print(model.configuration_matrix)

Или же при помощи алгоритма взаимодействующих стран

from PyPharm import BaseCompartmentModel
import numpy as np
matrix = [[0, None, 0, 0, 0],
[None, 0, None, 0, 0],
[0, None, 0, None, None],
[0, 0, 0, 0, 0],
[0, 0, None, 0, 0]]
outputs = [0, 0, 0.077, None, 0]

model = BaseCompartmentModel(matrix, outputs)

model.load_optimization_data(
	teoretic_x=[0.25, 0.5, 1, 4, 8, 24],
	teoretic_y=[[0, 0, 11.2, 5.3, 5.42, 3.2], [268.5, 783.3, 154.6, 224.2, 92.6, 0], [342, 637, 466, 235, 179, 158]],
	know_compartments=[0, 3, 4],
	c0=[0, 0, 20000, 0, 0]
)

model.optimize(
	method='country_optimization',
	Xmin=[0.5, 0.001, 0.001, 0.00001, 0.01, 0.01, 1, 1],
	Xmax=[5, 2, 2.5, 0.3, 1, 1, 10, 10],
	M=10,
	N=25,
	n=[1, 10],
	p=[0.00001, 2],
	m=[1, 8],
	k=8,
	l=3,
	ep=[0.2, 0.4],
	tmax=300,
	printing=True,
)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pypharm-1.2.2.tar.gz (11.4 kB view hashes)

Uploaded Source

Built Distribution

pypharm-1.2.2-py3-none-any.whl (12.3 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page