This is a pre-production deployment of Warehouse, however changes made here WILL affect the production instance of PyPI.
Latest Version Dependencies status unknown Test status unknown Test coverage unknown
Project Description

Compute an homogenization kernel between two PSFs.

This code is well suited for PSF matching applications in both an astronomical or microscopy context.

It has been developed as part of the ESA Euclid mission and is currently being used for multi-band photometric studies of HST (visible) and Herschel (IR) data.

Paper:http://arxiv.org/abs/1609.02006
Documentation:https://pypher.readthedocs.io

Features

  1. Warp (rotation + resampling) the PSF images (if necessary),
  2. Filter images in Fourier space using a regularized Wiener filter,
  3. Produce a homogenization kernel.

Note: pypher needs the pixel scale information to be present in the FITS files. If not, use the provided addpixscl method to add this missing info.

Warning: This code does not

  • interpolate NaN values (replaced by 0 instead),
  • center PSF images,
  • minimize the kernel size.

Installation

PyPHER works both with Python 2.7 and 3.3 or later and relies on numpy, scipy and astropy libraries.

Option 1: Pip

$ pip install pypher

Option 2: from source

$ git clone https://git.ias.u-psud.fr/aboucaud/pypher.git
$ cd pypher
$ python setup.py install

Basic example

$ pypher psf_a.fits psf_b.fits kernel_a_to_b.fits -r 1.e-5

This will create the desired kernel kernel_a_to_b.fits and a short log kernel_a_to_b.log with information about the processing.

Acknowledging

If you make use of any product of this code in a scientific publication, please consider acknowledging the work by citing the paper as well as the code itself .

Release History

Release History

0.6.3

This version

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.6.2

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.6.1

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

Download Files

Download Files

TODO: Brief introduction on what you do with files - including link to relevant help section.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
pypher-0.6.3-py2.py3-none-any.whl (13.3 kB) Copy SHA256 Checksum SHA256 2.7 Wheel Oct 6, 2016
pypher-0.6.3.tar.gz (20.4 kB) Copy SHA256 Checksum SHA256 Source Oct 6, 2016

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS HPE HPE Development Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting