Skip to main content

A toolkit for adaptive importance sampling featuring implementations of variational Bayes, population Monte Carlo, and Markov chains.

Project description

pypmc is a python package focusing on adaptive importance sampling. It can be used for integration and sampling from a user-defined target density. A typical application is Bayesian inference, where one wants to sample from the posterior to marginalize over parameters and to compute the evidence. The key idea is to create a good proposal density by adapting a mixture of Gaussian or student’s t components to the target density. The package is able to efficiently integrate multimodal functions in up to about 30-40 dimensions at the level of 1% accuracy or less. For many problems, this is achieved without requiring any manual input from the user about details of the function. Importance sampling supports parallelization on multiple machines via mpi4py.

Useful tools that can be used stand-alone include:

  • importance sampling (sampling & integration)

  • adaptive Markov chain Monte Carlo (sampling)

  • variational Bayes (clustering)

  • population Monte Carlo (clustering)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pypmc-1.2.4.tar.gz (1.2 MB view details)

Uploaded Source

Built Distributions

pypmc-1.2.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pypmc-1.2.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pypmc-1.2.4-cp312-cp312-macosx_11_0_arm64.whl (784.4 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pypmc-1.2.4-cp312-cp312-macosx_10_9_x86_64.whl (844.2 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pypmc-1.2.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pypmc-1.2.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pypmc-1.2.4-cp311-cp311-macosx_11_0_arm64.whl (780.3 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pypmc-1.2.4-cp311-cp311-macosx_10_9_x86_64.whl (837.9 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pypmc-1.2.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pypmc-1.2.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pypmc-1.2.4-cp310-cp310-macosx_11_0_arm64.whl (779.2 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pypmc-1.2.4-cp310-cp310-macosx_10_9_x86_64.whl (836.2 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pypmc-1.2.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pypmc-1.2.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pypmc-1.2.4-cp39-cp39-macosx_11_0_arm64.whl (781.2 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pypmc-1.2.4-cp39-cp39-macosx_10_9_x86_64.whl (838.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file pypmc-1.2.4.tar.gz.

File metadata

  • Download URL: pypmc-1.2.4.tar.gz
  • Upload date:
  • Size: 1.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for pypmc-1.2.4.tar.gz
Algorithm Hash digest
SHA256 480817d6487579232858f958516a0675017c88addd2c4439a9e9b1cd9e453670
MD5 dfd49dfdfb24aba754e9720e3ba09b39
BLAKE2b-256 47edc6e60642ea43b63e35c3ffcdc410e90fa6c8ca0083b7f7be9f1c0b3d43cd

See more details on using hashes here.

File details

Details for the file pypmc-1.2.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pypmc-1.2.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ed84f800dc647fbf8b4c4cb165cd296cb288c9d2e5628cb066418717a693fe1e
MD5 240c6d043920471691b25ce29a720c7a
BLAKE2b-256 d666f889094ede8efd98e71c0e69978036206232e27a5291d1f83aff0d56c047

See more details on using hashes here.

File details

Details for the file pypmc-1.2.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pypmc-1.2.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 58c970b81af1718c75e503975be423361cd8d57e6478255807e705191149582a
MD5 6b7fb339da137dcae77808d67097a259
BLAKE2b-256 287a004904155251539b4a3715eb5f534ec459f1917be61b2d535dc02503f1e0

See more details on using hashes here.

File details

Details for the file pypmc-1.2.4-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pypmc-1.2.4-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3c37f622bb9e42b6eacf0dd7172095683606ec42bd717d70f3aa79145e808d2a
MD5 d04b638d1c60e869074d93bbfddcedcd
BLAKE2b-256 071f0efc38b277939128cdaa539432fb6e7968f6586b9c98b9a9e9c73c3c8bba

See more details on using hashes here.

File details

Details for the file pypmc-1.2.4-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pypmc-1.2.4-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a4dd32be40040f6806321c05f86e37bbb8bde1b0bac3daa8c56a44ae8a55e6ea
MD5 131e3eddaba92891a6a48f13acf40b7f
BLAKE2b-256 a17c8163e79c114d61ee389993ec7d38c93e6ab122bf487cd0536492a8953dd7

See more details on using hashes here.

File details

Details for the file pypmc-1.2.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pypmc-1.2.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 398c61dc4ae6bbd81dfc418e553c59fd37d4f7a254614805a66cc1eb161aa855
MD5 3ce07cf30892e508cd0ca99b4a945497
BLAKE2b-256 1c3ec01c7b31c0cfeee0bdbeb6a250457d558074f031080f11df2a4b543a4fe2

See more details on using hashes here.

File details

Details for the file pypmc-1.2.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pypmc-1.2.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a92f89b6faf1b9578443daddf0055de3f62050c8364b62a2b6f26cb76342978a
MD5 2e69f6c13e6d6729555d4a18e3dc98c3
BLAKE2b-256 c7311aa1d9020dbf2ffbf4c8fd49b51f4b2371060b30ad33238d749e90734ea3

See more details on using hashes here.

File details

Details for the file pypmc-1.2.4-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pypmc-1.2.4-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ce8540f4ce13273ede7d42fea33618ae32b10f4b6da3e6f98edadb6a79977863
MD5 a6d3a5419b489359a283928c4ba1a601
BLAKE2b-256 00cc1b63a9a7e9b5ac497d9ab7a0477ce56b42d36b50c7699cc3a12dfe4b3f85

See more details on using hashes here.

File details

Details for the file pypmc-1.2.4-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pypmc-1.2.4-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cab6fd8017b291380fd6230d25bc826cc4541716a012d246ed71496b2f64fc68
MD5 1e52e060fd44f536bd13dcb219cf84e2
BLAKE2b-256 3ea648a14c13fa518bac06c11e420aa778cb6d06b496fc8428cf6069e5ece3a5

See more details on using hashes here.

File details

Details for the file pypmc-1.2.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pypmc-1.2.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 808669b6c01fe21ecee0ba207fa84024bece3f34a3e4e90ea419806070795908
MD5 d66c28bf01869e755af9e3995530622a
BLAKE2b-256 0487e99b1e3ac0aa31b0f03b4fe80a2460bc0eb4b82a5bfeff4d5b588b8e8019

See more details on using hashes here.

File details

Details for the file pypmc-1.2.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pypmc-1.2.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 83a90ef5b6eeb255a0ec72b09f18b116877876639744960458622d6e3fbc945a
MD5 f1d76fed8b02d696e4b3126857765a96
BLAKE2b-256 a9267c7143c50bf50a3bbbff9a0bf431796e2d0b4be229ea31c6c9f141d9df93

See more details on using hashes here.

File details

Details for the file pypmc-1.2.4-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pypmc-1.2.4-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 524443f1dd24a674a60f76f41a2d96fd1a8d332648d9737dbea902775da39056
MD5 c68c18870b8b1837dff04834d2fccb02
BLAKE2b-256 df1d56bbbf5fa06278d0f7d4049005ac256387b184beffb28aec78b069a25857

See more details on using hashes here.

File details

Details for the file pypmc-1.2.4-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pypmc-1.2.4-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a8b2391f309bfce3e29c364cc52730ca294f399b07fdd507b40fa36f7b670f9d
MD5 bf25d7c1cf45ca47b74ac288da47fcab
BLAKE2b-256 6bb0485f0e6a6da5c0c314641472b0ba26fd40f0d2244711319ea0d68b1981db

See more details on using hashes here.

File details

Details for the file pypmc-1.2.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pypmc-1.2.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f0aa7149596148761067fc39fcf70c7675fb66b8b747e90c1cd372df1e447601
MD5 60678f4084942eda6a92073dc36fb93e
BLAKE2b-256 bc2717b49cf3a151a18c9c5fac7cdc58b882c67e8bbf2d46b8dac5d8caead679

See more details on using hashes here.

File details

Details for the file pypmc-1.2.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pypmc-1.2.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 91ad48283fd1052c4758c3cecd50f2f5dc0f914d6762ad189fcb5e2ac468695d
MD5 b334082f09248222c1acaa029782ec7f
BLAKE2b-256 a6e6d7081e318e92a13f99c4f0ba06fc28e0b4b37aee6e7002cc55be37addfbe

See more details on using hashes here.

File details

Details for the file pypmc-1.2.4-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pypmc-1.2.4-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 61ee7028964d71a2880a7f6526a5dd48e2445309027e9b7ab89a6083bd1fd502
MD5 ca29b75b0b93b63c300e452db189a3bf
BLAKE2b-256 e08855055c9cd75c2dbb35d587f1461cf94f699a420933924cb1c73de44a9c24

See more details on using hashes here.

File details

Details for the file pypmc-1.2.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pypmc-1.2.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d7608a7efc099b9a86ae39d19f20392f88876ee75f981c73aaaee88e76bf0627
MD5 e4c4b52394206dc8a2738141773634c0
BLAKE2b-256 ffaa57e77a30caf4985564a270ccc82b07a452260e742051c41b496e0bed95f8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page