PMML4S Python API
Project description
PyPMML
PyPMML is the Python API for PMML4S.
Prerequisites
- Java >= 1.8
- Python 2.7 or >= 3.5
Dependencies
- Py4J
- Pandas (optional)
Installation
pip install pypmml
Or install the latest version from github:
pip install --upgrade git+https://github.com/autodeployai/pypmml.git
Usage
-
Load model from various sources, e.g. filename, string, or array of bytes.
from pypmml import Model # The model is from http://dmg.org/pmml/pmml_examples/KNIME_PMML_4.1_Examples/single_iris_dectree.xml model = Model.fromFile('single_iris_dectree.xml')
-
Call
predict(data)
to predict new values that can be in different types, e.g. dict, json, Series or DataFrame of Pandas.# data in dict result = model.predict({'sepal_length': 5.1, 'sepal_width': 3.5, 'petal_length': 1.4, 'petal_width': 0.2}) >>> print(result) {'Probability': 1.0, 'Node_ID': '1', 'Probability_Iris-virginica': 0.0, 'Probability_Iris-setosa': 1.0, 'Probability_Iris-versicolor': 0.0, 'PredictedValue': 'Iris-setosa'} # data in 'records' json result = model.predict('[{"sepal_length": 5.1, "sepal_width": 3.5, "petal_length": 1.4, "petal_width": 0.2}]') >>> print(result) [{"Probability":1.0,"Probability_Iris-versicolor":0.0,"Probability_Iris-setosa":1.0,"Probability_Iris-virginica":0.0,"PredictedValue":"Iris-setosa","Node_ID":"1"}] # data in 'split' json result = model.predict('{"columns": ["sepal_length", "sepal_width", "petal_length", "petal_width"], "data": [[5.1, 3.5, 1.4, 0.2]]}') >>> print(result) {"columns":["PredictedValue","Probability","Probability_Iris-setosa","Probability_Iris-versicolor","Probability_Iris-virginica","Node_ID"],"data":[["Iris-setosa",1.0,1.0,0.0,0.0,"1"]]}
How to work with Pandas
import pandas as pd # data in Series result = model.predict(pd.Series({'sepal_length': 5.1, 'sepal_width': 3.5, 'petal_length': 1.4, 'petal_width': 0.2})) >>> print(result) Node_ID 1 PredictedValue Iris-setosa Probability 1 Probability_Iris-setosa 1 Probability_Iris-versicolor 0 Probability_Iris-virginica 0 Name: 0, dtype: object # The data is from here: http://dmg.org/pmml/pmml_examples/Iris.csv data = pd.read_csv('Iris.csv') # data in DataFrame result = model.predict(data) >>> print(result) Node_ID PredictedValue Probability Probability_Iris-setosa Probability_Iris-versicolor Probability_Iris-virginica 0 1 Iris-setosa 1.000000 1.0 0.000000 0.000000 1 1 Iris-setosa 1.000000 1.0 0.000000 0.000000 .. ... ... ... ... ... ... 148 10 Iris-virginica 0.978261 0.0 0.021739 0.978261 149 10 Iris-virginica 0.978261 0.0 0.021739 0.978261 [150 rows x 6 columns]
-
Shutdown the gateway of Py4J to free resources.
Model.close()
Use in PySpark
See the PyPMML-Spark project.
Support
If you have any questions about the PyPMML library, please open issues on this repository.
Feedback and contributions to the project, no matter what kind, are always very welcome.
License
PyPMML is licensed under APL 2.0.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file pypmml-0.9.0.tar.gz
.
File metadata
- Download URL: pypmml-0.9.0.tar.gz
- Upload date:
- Size: 14.7 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.4.2 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.26.0 CPython/3.7.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f77c20843684b8586ad0f912b70f1c4c69035bbc2ecd270e430c07b4789b1a95 |
|
MD5 | 088404bfedf8bda1c3a6257f5cbde916 |
|
BLAKE2b-256 | 2ffe22e754e0528c968296926e0f0a61123e09be4400f889846a492a9fde0295 |