Skip to main content

Python PMML scoring library

Project description

PyPMML

PyPMML is a Python PMML scoring library, it really is the Python API for PMML4S.

Prerequisites

  • Java >= 1.8
  • Python 2.7 or >= 3.5

Dependencies

  • Py4J
  • Pandas (optional)

Installation

pip install pypmml

Or install the latest version from github:

pip install --upgrade git+https://github.com/autodeployai/pypmml.git

Usage

  1. Load model from various sources, e.g. filename, string, or array of bytes.

    from pypmml import Model
    
    # The model is from http://dmg.org/pmml/pmml_examples/KNIME_PMML_4.1_Examples/single_iris_dectree.xml
    model = Model.fromFile('single_iris_dectree.xml')
    
  2. Call predict(data) to predict new values that can be in different types, e.g. dict, json, Series or DataFrame of Pandas.

    # data in dict
    result = model.predict({'sepal_length': 5.1, 'sepal_width': 3.5, 'petal_length': 1.4, 'petal_width': 0.2})
     >>> print(result)
    {'probability': 1.0, 'node_id': '1', 'probability_Iris-virginica': 0.0, 'probability_Iris-setosa': 1.0, 'probability_Iris-versicolor': 0.0, 'predicted_class': 'Iris-setosa'}
    
    # data in 'records' json
    result = model.predict('[{"sepal_length": 5.1, "sepal_width": 3.5, "petal_length": 1.4, "petal_width": 0.2}]')
     >>> print(result)
    [{"probability":1.0,"probability_Iris-versicolor":0.0,"probability_Iris-setosa":1.0,"probability_Iris-virginica":0.0,"predicted_class":"Iris-setosa","node_id":"1"}]
    
    # data in 'split' json
    result = model.predict('{"columns": ["sepal_length", "sepal_width", "petal_length", "petal_width"], "data": [[5.1, 3.5, 1.4, 0.2]]}')
     >>> print(result)
    {"columns":["predicted_class","probability","probability_Iris-setosa","probability_Iris-versicolor","probability_Iris-virginica","node_id"],"data":[["Iris-setosa",1.0,1.0,0.0,0.0,"1"]]}
    

    How to work with Pandas

    import pandas as pd
    
    # data in Series
    result = model.predict(pd.Series({'sepal_length': 5.1, 'sepal_width': 3.5, 'petal_length': 1.4, 'petal_width': 0.2}))
    >>> print(result)
    node_id                                   1
    predicted_class                 Iris-setosa
    probability                               1
    probability_Iris-setosa                   1
    probability_Iris-versicolor               0
    probability_Iris-virginica                0
    Name: 0, dtype: object
    
    # The data is from here: http://dmg.org/pmml/pmml_examples/Iris.csv
    data = pd.read_csv('Iris.csv')
    
    # data in DataFrame
    result = model.predict(data)
     >>> print(result)
        node_id   predicted_class  probability  probability_Iris-setosa  probability_Iris-versicolor  probability_Iris-virginica
    0         1       Iris-setosa     1.000000                      1.0                     0.000000                    0.000000
    1         1       Iris-setosa     1.000000                      1.0                     0.000000                    0.000000
    ..      ...               ...          ...                      ...                          ...                         ...
    148      10    Iris-virginica     0.978261                      0.0                     0.021739                    0.978261
    149      10    Iris-virginica     0.978261                      0.0                     0.021739                    0.978261
    
    [150 rows x 6 columns]
    

Use PMML in Scala or Java

See the PMML4S project. PMML4S a PMML scoring library for Scala. It provides both Scala and Java Evaluator API for PMML.

Use PMML in Spark

See the PMML4S-Spark project. PMML4S-Spark is a PMML scoring library for Spark as SparkML Transformer.

Use PMML in PySpark

See the PyPMML-Spark project. PyPMML-Spark is a Python PMML scoring library for PySpark as SparkML Transformer, it really is the Python API for PMML4s-Spark.

Deploy PMML as REST API

See the DaaS system that deploys AI & ML models in production at scale on Kubernetes.

Support

If you have any questions about the PyPMML library, please open issues on this repository.

Feedback and contributions to the project, no matter what kind, are always very welcome.

License

PyPMML is licensed under APL 2.0.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pypmml-0.9.3.tar.gz (15.1 MB view details)

Uploaded Source

File details

Details for the file pypmml-0.9.3.tar.gz.

File metadata

  • Download URL: pypmml-0.9.3.tar.gz
  • Upload date:
  • Size: 15.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.4.2 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.26.0 CPython/3.7.0

File hashes

Hashes for pypmml-0.9.3.tar.gz
Algorithm Hash digest
SHA256 64ea25ac37354009210796da78770a6d2040f98a2061de3bc85b71e88fb96de4
MD5 f45d41621b9a3adaafdd98415190eb6e
BLAKE2b-256 4a19f6b525fbd291c5d8378f6dcd9f95b459fab83e4edb9ca0076c34aaffc355

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page