Skip to main content

Python PMML scoring library

Project description


PyPMML is a Python PMML scoring library, it really is the Python API for PMML4S.


  • Java >= 1.8
  • Python 2.7 or >= 3.5


  • Py4J
  • Pandas (optional)


pip install pypmml

Or install the latest version from github:

pip install --upgrade git+


  1. Load model from various sources, e.g. readable, file path, string, or an array of bytes.

    from pypmml import Model
    # The model is from
    model = Model.load('single_iris_dectree.xml')
  2. Call predict(data) to predict new values that can be in different types, e.g. dict, json, Series or DataFrame of Pandas.

    # data in dict
    result = model.predict({'sepal_length': 5.1, 'sepal_width': 3.5, 'petal_length': 1.4, 'petal_width': 0.2})
     >>> print(result)
    {'probability': 1.0, 'node_id': '1', 'probability_Iris-virginica': 0.0, 'probability_Iris-setosa': 1.0, 'probability_Iris-versicolor': 0.0, 'predicted_class': 'Iris-setosa'}
    # data in 'records' json
    result = model.predict('[{"sepal_length": 5.1, "sepal_width": 3.5, "petal_length": 1.4, "petal_width": 0.2}]')
     >>> print(result)
    # data in 'split' json
    result = model.predict('{"columns": ["sepal_length", "sepal_width", "petal_length", "petal_width"], "data": [[5.1, 3.5, 1.4, 0.2]]}')
     >>> print(result)

    How to work with Pandas

    import pandas as pd
    # data in Series
    result = model.predict(pd.Series({'sepal_length': 5.1, 'sepal_width': 3.5, 'petal_length': 1.4, 'petal_width': 0.2}))
    >>> print(result)
    node_id                                   1
    predicted_class                 Iris-setosa
    probability                               1
    probability_Iris-setosa                   1
    probability_Iris-versicolor               0
    probability_Iris-virginica                0
    Name: 0, dtype: object
    # The data is from here:
    data = pd.read_csv('Iris.csv')
    # data in DataFrame
    result = model.predict(data)
     >>> print(result)
        node_id   predicted_class  probability  probability_Iris-setosa  probability_Iris-versicolor  probability_Iris-virginica
    0         1       Iris-setosa     1.000000                      1.0                     0.000000                    0.000000
    1         1       Iris-setosa     1.000000                      1.0                     0.000000                    0.000000
    ..      ...               ...          ...                      ...                          ...                         ...
    148      10    Iris-virginica     0.978261                      0.0                     0.021739                    0.978261
    149      10    Iris-virginica     0.978261                      0.0                     0.021739                    0.978261
    [150 rows x 6 columns]

Use PMML in Scala or Java

See the PMML4S project. PMML4S a PMML scoring library for Scala. It provides both Scala and Java Evaluator API for PMML.

Use PMML in Spark

See the PMML4S-Spark project. PMML4S-Spark is a PMML scoring library for Spark as SparkML Transformer.

Use PMML in PySpark

See the PyPMML-Spark project. PyPMML-Spark is a Python PMML scoring library for PySpark as SparkML Transformer, it really is the Python API for PMML4s-Spark.


See the DaaS system that deploys AI & ML models in production at scale on Kubernetes.


If you have any questions about the PyPMML library, please open issues on this repository.

Feedback and contributions to the project, no matter what kind, are always very welcome.


PyPMML is licensed under APL 2.0.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for pypmml, version 0.9.4
Filename, size File type Python version Upload date Hashes
Filename, size pypmml-0.9.4.tar.gz (15.1 MB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring DigiCert DigiCert EV certificate Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page