Skip to main content

Python PMML scoring library

Project description

PyPMML

PyPMML is a Python PMML scoring library, it really is the Python API for PMML4S.

Prerequisites

  • Java >= 1.8
  • Python 2.7 or >= 3.5

Dependencies

  • Py4J
  • Pandas (optional)

Installation

pip install pypmml

Or install the latest version from github:

pip install --upgrade git+https://github.com/autodeployai/pypmml.git

Usage

  1. Load model from various sources, e.g. readable, file path, string, or an array of bytes.

    from pypmml import Model
    
    # The model is from http://dmg.org/pmml/pmml_examples/KNIME_PMML_4.1_Examples/single_iris_dectree.xml
    model = Model.load('single_iris_dectree.xml')
    
  2. Call predict(data) to predict new values that can be in different types, e.g. dict, json, Series or DataFrame of Pandas.

    # data in dict
    result = model.predict({'sepal_length': 5.1, 'sepal_width': 3.5, 'petal_length': 1.4, 'petal_width': 0.2})
     >>> print(result)
    {'probability': 1.0, 'node_id': '1', 'probability_Iris-virginica': 0.0, 'probability_Iris-setosa': 1.0, 'probability_Iris-versicolor': 0.0, 'predicted_class': 'Iris-setosa'}
    
    # data in 'records' json
    result = model.predict('[{"sepal_length": 5.1, "sepal_width": 3.5, "petal_length": 1.4, "petal_width": 0.2}]')
     >>> print(result)
    [{"probability":1.0,"probability_Iris-versicolor":0.0,"probability_Iris-setosa":1.0,"probability_Iris-virginica":0.0,"predicted_class":"Iris-setosa","node_id":"1"}]
    
    # data in 'split' json
    result = model.predict('{"columns": ["sepal_length", "sepal_width", "petal_length", "petal_width"], "data": [[5.1, 3.5, 1.4, 0.2]]}')
     >>> print(result)
    {"columns":["predicted_class","probability","probability_Iris-setosa","probability_Iris-versicolor","probability_Iris-virginica","node_id"],"data":[["Iris-setosa",1.0,1.0,0.0,0.0,"1"]]}
    

    How to work with Pandas

    import pandas as pd
    
    # data in Series
    result = model.predict(pd.Series({'sepal_length': 5.1, 'sepal_width': 3.5, 'petal_length': 1.4, 'petal_width': 0.2}))
    >>> print(result)
    node_id                                   1
    predicted_class                 Iris-setosa
    probability                               1
    probability_Iris-setosa                   1
    probability_Iris-versicolor               0
    probability_Iris-virginica                0
    Name: 0, dtype: object
    
    # The data is from here: http://dmg.org/pmml/pmml_examples/Iris.csv
    data = pd.read_csv('Iris.csv')
    
    # data in DataFrame
    result = model.predict(data)
     >>> print(result)
        node_id   predicted_class  probability  probability_Iris-setosa  probability_Iris-versicolor  probability_Iris-virginica
    0         1       Iris-setosa     1.000000                      1.0                     0.000000                    0.000000
    1         1       Iris-setosa     1.000000                      1.0                     0.000000                    0.000000
    ..      ...               ...          ...                      ...                          ...                         ...
    148      10    Iris-virginica     0.978261                      0.0                     0.021739                    0.978261
    149      10    Iris-virginica     0.978261                      0.0                     0.021739                    0.978261
    
    [150 rows x 6 columns]
    

Use PMML in Scala or Java

See the PMML4S project. PMML4S is a PMML scoring library for Scala. It provides both Scala and Java Evaluator API for PMML.

Use PMML in Spark

See the PMML4S-Spark project. PMML4S-Spark is a PMML scoring library for Spark as SparkML Transformer.

Use PMML in PySpark

See the PyPMML-Spark project. PyPMML-Spark is a Python PMML scoring library for PySpark as SparkML Transformer, it really is the Python API for PMML4s-Spark.

Deploy PMML as REST API

See the DaaS system that deploys AI & ML models in production at scale on Kubernetes.

Support

If you have any questions about the PyPMML library, please open issues on this repository.

Feedback and contributions to the project, no matter what kind, are always very welcome.

License

PyPMML is licensed under APL 2.0.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pypmml-0.9.5.tar.gz (15.0 MB view details)

Uploaded Source

File details

Details for the file pypmml-0.9.5.tar.gz.

File metadata

  • Download URL: pypmml-0.9.5.tar.gz
  • Upload date:
  • Size: 15.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.6.8

File hashes

Hashes for pypmml-0.9.5.tar.gz
Algorithm Hash digest
SHA256 0ac7d68dc28bf453c31481bddb4d395044f1c8d84842fe2100fe8ee8b63a85bd
MD5 9322e06c970d3ffa95cb3d311ab1705f
BLAKE2b-256 3aadfeb2389388d247fe12d14de64e48a3b610d06943dc22a5000bf88d670e9c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page