Skip to main content

Python PMML scoring library

Project description

PyPMML

PyPMML is a Python PMML scoring library, it really is the Python API for PMML4S.

Prerequisites

  • Java >= 8
  • Python 2.7 or >= 3.5

Dependencies

Installation

pip install pypmml

Or install the latest version from github:

pip install --upgrade git+https://github.com/autodeployai/pypmml.git

Usage

  1. Load model from various sources, e.g. readable, file path, string, or an array of bytes.

    from pypmml import Model
    
    # The model is from http://dmg.org/pmml/pmml_examples/KNIME_PMML_4.1_Examples/single_iris_dectree.xml
    model = Model.load('single_iris_dectree.xml')
    
  2. Call predict(data) to predict new values that can be in different types, e.g. dict, list, json, ndarray of NumPy, Series or DataFrame of Pandas.

    • data in dict:
    >>> model.predict({'sepal_length': 5.1, 'sepal_width': 3.5, 'petal_length': 1.4, 'petal_width': 0.2})
    {'probability_Iris-setosa': 1.0, 'probability_Iris-versicolor': 0.0, 'probability': 1.0, 'predicted_class': 'Iris-setosa', 'probability_Iris-virginica': 0.0, 'node_id': '1'}
    
    • data in list:

    NOTE: the order of values must match the input names, and the order of results always matches the output names.

    >>> model.inputNames
    ['sepal_length', 'sepal_width', 'petal_length', 'petal_width']
    >>> model.predict([5.1, 3.5, 1.4, 0.2])
    ['Iris-setosa', 1.0, 1.0, 0.0, 0.0, '1']
    >>> model.outputNames
    ['predicted_class', 'probability', 'probability_Iris-setosa', 'probability_Iris-versicolor', 'probability_Iris-virginica', 'node_id']
    
    • data in records json:
    >>> model.predict('[{"sepal_length": 5.1, "sepal_width": 3.5, "petal_length": 1.4, "petal_width": 0.2}]')
    [{"probability":1.0,"probability_Iris-versicolor":0.0,"probability_Iris-setosa":1.0,"probability_Iris-virginica":0.0,"predicted_class":"Iris-setosa","node_id":"1"}]
    
    • data in split json:
    >>> model.predict('{"columns": ["sepal_length", "sepal_width", "petal_length", "petal_width"], "data": [[5.1, 3.5, 1.4, 0.2]]}')
    {"columns":["predicted_class","probability","probability_Iris-setosa","probability_Iris-versicolor","probability_Iris-virginica","node_id"],"data":[["Iris-setosa",1.0,1.0,0.0,0.0,"1"]]}
    
    • data in ndarray of NumPy:

    NOTE: as the list above, the order of ndarray values must match the input names, and the order of results always matches the output names.

    >>> import numpy as np
    >>> model.predict(np.array([5.1, 3.5, 1.4, 0.2]))
    ['Iris-setosa', 1.0, 1.0, 0.0, 0.0, '1']
    >>> 
    >>> model.predict(np.array([[5.1, 3.5, 1.4, 0.2], [7, 3.2, 4.7, 1.4]]))
    [['Iris-setosa', 1.0, 1.0, 0.0, 0.0, '1'], ['Iris-versicolor', 0.9074074074074074, 0.0, 0.9074074074074074, 0.09259259259259259, '3']]
    
    • data in Series of Pandas:
    >>> import pandas as pd
    >>> model.predict(pd.Series({'sepal_length': 5.1, 'sepal_width': 3.5, 'petal_length': 1.4, 'petal_width': 0.2}))
    node_id                                  1
    predicted_class                Iris-setosa
    probability                              1
    probability_Iris-setosa                  1
    probability_Iris-versicolor              0
    probability_Iris-virginica               0
    Name: 0, dtype: object
    
    • data in DataFrame of Pandas:
    >>> import pandas as pd
    >>> data = pd.read_csv('Iris.csv') # The data is from here: http://dmg.org/pmml/pmml_examples/Iris.csv
    >>> model.predict(data)
    node_id predicted_class  probability  probability_Iris-setosa  probability_Iris-versicolor  probability_Iris-virginica
    0         1     Iris-setosa     1.000000                      1.0                     0.000000                    0.000000
    1         1     Iris-setosa     1.000000                      1.0                     0.000000                    0.000000
    2         1     Iris-setosa     1.000000                      1.0                     0.000000                    0.000000
    3         1     Iris-setosa     1.000000                      1.0                     0.000000                    0.000000
    4         1     Iris-setosa     1.000000                      1.0                     0.000000                    0.000000
    ..      ...             ...          ...                      ...                          ...                         ...
    145      10  Iris-virginica     0.978261                      0.0                     0.021739                    0.978261
    146      10  Iris-virginica     0.978261                      0.0                     0.021739                    0.978261
    147      10  Iris-virginica     0.978261                      0.0                     0.021739                    0.978261
    148      10  Iris-virginica     0.978261                      0.0                     0.021739                    0.978261
    149      10  Iris-virginica     0.978261                      0.0                     0.021739                    0.978261
    

Support Java gateways

PyPMML supports both backends access to Java from Python: "py4j" and "jpype", Py4j is used by default, you can call the following code to switch to jpype before loading models:

from pypmml import PMMLContext

PMMLContext.getOrCreate(gateway="jpype")

Use PMML in Scala or Java

See the PMML4S project. PMML4S is a PMML scoring library for Scala. It provides both Scala and Java Evaluator API for PMML.

Use PMML in Spark

See the PMML4S-Spark project. PMML4S-Spark is a PMML scoring library for Spark as SparkML Transformer.

Use PMML in PySpark

See the PyPMML-Spark project. PyPMML-Spark is a Python PMML scoring library for PySpark as SparkML Transformer, it really is the Python API for PMML4s-Spark.

Deploy PMML as REST API

See the AI-Serving project. AI-Serving is serving AI/ML models in the open standard formats PMML and ONNX with both HTTP (REST API) and gRPC endpoints.

Deploy and Manage AI/ML models at scale

See the DaaS system that deploys AI/ML models in production at scale on Kubernetes.

Support

If you have any questions about the PyPMML library, please open issues on this repository.

Feedback and contributions to the project, no matter what kind, are always very welcome.

License

PyPMML is licensed under APL 2.0.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pypmml-1.0.3.tar.gz (13.4 MB view details)

Uploaded Source

File details

Details for the file pypmml-1.0.3.tar.gz.

File metadata

  • Download URL: pypmml-1.0.3.tar.gz
  • Upload date:
  • Size: 13.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for pypmml-1.0.3.tar.gz
Algorithm Hash digest
SHA256 3ab63ec966e83e446eb246beb0170c6a60ef0ec3827a69566792676ade900b58
MD5 109b6e9102ad0223886372b2f290eced
BLAKE2b-256 3d2b125cb24a24ee425b8fff138f2f26aa7fa46f24cd03a9ccf69614e7bdaaf0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page