This is the pypolymlp module.
Project description
A generator of polynomial machine learning potentials
Polynomial machine learning potentials
Citation of pypolymlp
“Tutorial: Systematic development of polynomial machine learning potentials for elemental and alloy systems”, A. Seko, J. Appl. Phys. 133, 011101 (2023)
@article{pypolymlp,
author = {Seko, Atsuto},
title = "{"Tutorial: Systematic development of polynomial machine learning potentials for elemental and alloy systems"}",
journal = {J. Appl. Phys.},
volume = {133},
number = {1},
pages = {011101},
year = {2023},
month = {01},
}
Required libraries and python modules
- python >= 3.9
- numpy != 2.0.*
- scipy
- pyyaml
- setuptools
- eigen3
- pybind11
- openmp (recommended)
[Optional]
- phonopy (if using phonon datasets and/or computing force constants)
- phono3py (if using phonon datasets and/or computing force constants)
- symfc (if computing force constants)
- sparse_dot_mkl (if computing force constants)
- spglib
How to install pypolymlp
- Install from conda-forge
Version | Last Update | Downloads | Platform | License |
---|---|---|---|---|
conda create -n pypolymlp-env
conda activate pypolymlp-env
conda install -c conda-forge pypolymlp
- Install from PyPI
conda create -n pypolymlp-env
conda activate pypolymlp-env
conda install -c conda-forge numpy scipy pybind11 eigen cmake cxx-compiler
pip install pypolymlp
Building C++ codes in pypolymlp may require a significant amount of time.
- Install from GitHub
git clone https://github.com/sekocha/pypolymlp.git
cd pypolymlp
conda create -n pypolymlp-env
conda activate pypolymlp-env
conda install -c conda-forge numpy scipy pybind11 eigen cmake cxx-compiler
pip install . -vvv
Building C++ codes in pypolymlp may require a significant amount of time.
How to use pypolymlp
- Polynomial MLP development
- Property calculators
- Energy, forces on atoms, and stress tensor
- Force constants
- Elastic constants
- Equation of states
- Structural features (Polynomial invariants)
- Local geometry optimization
- Phonon properties, Quasi-harmonic approximation
- Self-consistent phonon calculations
- Utilities
- Random structure generation
- Estimation of computational costs
- Enumeration of optimal MLPs
- Compression of vasprun.xml files
- Automatic division of DFT dataset
- Atomic energies
- Python API (MLP development)
- Python API (Property calculations)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pypolymlp-0.4.4.tar.gz
(37.3 MB
view details)
File details
Details for the file pypolymlp-0.4.4.tar.gz
.
File metadata
- Download URL: pypolymlp-0.4.4.tar.gz
- Upload date:
- Size: 37.3 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ea584be8f3882dc0c2c693fc9b7b0a271f99a90d83b2307f6ada37bce54af696 |
|
MD5 | d5fca849e684e35450df7caa6e251119 |
|
BLAKE2b-256 | d9113785d4b468e63357d84ab3b7cb54ab56e9514458e8679185e3b17b24fc70 |