Generator of polynomial machine learning potentials.
Project description
A generator of polynomial machine learning potentials
Polynomial machine learning potentials
Required libraries and python modules
- python >= 3.9
- numpy
- scipy
- pyyaml
- setuptools
- eigen3
- pybind11
- openmp (recommended)
- phonopy (if using phonon datasets and/or computing force constants)
- phono3py (if using phonon datasets and/or computing force constants)
- symfc (if computing force constants)
- spglib (optional)
- joblib (optional)
How to use pypolymlp
- Polynomial MLP development
- Property calculators
- Energy, forces on atoms, and stress tensor
- Force constants
- Elastic constants
- Equation of states
- Structural features (Polynomial invariants)
- Local geometry optimization
- Phonon properties, Quasi-harmonic approximation
- Self-consistent phonon calculations
- Utilities
- Random structure generation
- Estimation of computational costs
- Enumeration of optimal MLPs
- Compression of vasprun.xml files
- Automatic division of DFT dataset
- Atomic energies
- Python API (MLP development)
- Python API (Property calculations)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pypolymlp-0.3.0.tar.gz
(27.4 MB
view details)
File details
Details for the file pypolymlp-0.3.0.tar.gz
.
File metadata
- Download URL: pypolymlp-0.3.0.tar.gz
- Upload date:
- Size: 27.4 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3ec84db67b3611f73112e97edeb7e81b538a33af504142468b9f5975b5ae4e40 |
|
MD5 | 957aacbaa1e9d562a20b1af77d9a0b13 |
|
BLAKE2b-256 | 8e7665947f728e0167b258428d99a10f67aa297d364faca9ef3aea4e3e14f489 |