This is the pypolymlp module.
Project description
A generator of polynomial machine learning potentials
Polynomial machine learning potentials
Required libraries and python modules
- python >= 3.9
- numpy < 2.0.0
- scipy
- pyyaml
- setuptools
- eigen3
- pybind11
- openmp (recommended)
- phonopy (if using phonon datasets and/or computing force constants)
- phono3py (if using phonon datasets and/or computing force constants)
- symfc (if computing force constants)
- spglib (optional)
How to install pypolymlp
-
Install from conda-forge: Coming soon.
-
Install from PyPI
conda create -n pypolymlp-env
conda activate pypolymlp-env
conda install -c conda-forge numpy scipy pybind11 eigen cmake cxx-compiler
pip install pypolymlp
- Install from GitHub
git clone https://github.com/sekocha/pypolymlp.git
cd pypolymlp
conda create -n pypolymlp-env
conda activate pypolymlp-env
conda install -c conda-forge numpy scipy pybind11 eigen cmake cxx-compiler
pip install . -vvv
Building C++ codes in pypolymlp may require a significant amount of time.
How to use pypolymlp
- Polynomial MLP development
- Property calculators
- Energy, forces on atoms, and stress tensor
- Force constants
- Elastic constants
- Equation of states
- Structural features (Polynomial invariants)
- Local geometry optimization
- Phonon properties, Quasi-harmonic approximation
- Self-consistent phonon calculations
- Utilities
- Random structure generation
- Estimation of computational costs
- Enumeration of optimal MLPs
- Compression of vasprun.xml files
- Automatic division of DFT dataset
- Atomic energies
- Python API (MLP development)
- Python API (Property calculations)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pypolymlp-0.3.3.tar.gz
(22.9 MB
view details)
File details
Details for the file pypolymlp-0.3.3.tar.gz
.
File metadata
- Download URL: pypolymlp-0.3.3.tar.gz
- Upload date:
- Size: 22.9 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 435b43b337d7ed7ff51da2c6f12acb880cd0ae2a686924a2d779fe0b685c9f10 |
|
MD5 | 2590143f850cd234c4f7478f52116d9e |
|
BLAKE2b-256 | dc94f1dde54522a9827216d207bf5592783f5d9c688b6522d077dedec76eca20 |