Skip to main content

Python Polyhedron Manipulation

Project description

This library implements common operations over convex polyhedra such as polytope projection, double description (conversion between halfspace and vertex representations), Chebyshev center computation, … See the complete API documentation for details.

Installation

Make sure you have all system-wide dependencies by:

sudo apt-get install cython libglpk-dev python python-dev python-pip python-scipy

Then, install the module itself:

pip install pypoman

Examples

Vertex enumeration

We can compute the list of vertices of a polytope described in halfspace representation by A * x <= b:

import numpy
import pypoman

A = numpy.array([
    [-1,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0],
    [0, -1,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0],
    [0,  0, -1,  0,  0,  0,  0,  0,  0,  0,  0,  0],
    [0,  0,  0, -1,  0,  0,  0,  0,  0,  0,  0,  0],
    [0,  0,  0,  0, -1,  0,  0,  0,  0,  0,  0,  0],
    [0,  0,  0,  0,  0, -1,  0,  0,  0,  0,  0,  0],
    [0,  0,  0,  0,  0,  0, -1,  0,  0,  0,  0,  0],
    [0,  0,  0,  0,  0,  0,  0, -1,  0,  0,  0,  0],
    [0,  0,  0,  0,  0,  0,  0,  0, -1,  0,  0,  0],
    [0,  0,  0,  0,  0,  0,  0,  0,  0, -1,  0,  0],
    [0,  0,  0,  0,  0,  0,  0,  0,  0,  0, -1,  0],
    [0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0, -1],
    [1,  1,  1,  0,  0,  0,  0,  0,  0,  0,  0,  0],
    [0,  0,  0,  1,  1,  1,  0,  0,  0,  0,  0,  0],
    [0,  0,  0,  0,  0,  0,  1,  1,  1,  0,  0,  0],
    [0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  1,  1],
    [1,  0,  0,  1,  0,  0,  1,  0,  0,  1,  0,  0],
    [0,  1,  0,  0,  1,  0,  0,  1,  0,  0,  1,  0],
    [0,  0,  1,  0,  0,  1,  0,  0,  1,  0,  0,  1]])
b = numpy.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 2, 2, 1, 2, 3])
vertices = pypoman.compute_polytope_vertices(A, b)

Polytope projection

Let us project an n-dimensional polytope over x = [x_1 ... x_n] onto its first two coordinates proj(x) = [x_1 x_2]:

import pypoman
from numpy import array, eye, ones, vstack, zeros

n = 10  # dimension of the original polytope
p = 2   # dimension of the projected polytope

# Original polytope:
# - inequality constraints: \forall i, |x_i| <= 1
# - equality constraint: sum_i x_i = 0
A = vstack([+eye(n), -eye(n)])
b = ones(2 * n)
C = ones(n).reshape((1, n))
d = array([0])
ineq = (A, b)  # A * x <= b
eq = (C, d)    # C * x == d

# Projection is proj(x) = [x_0 x_1]
E = zeros((p, n))
E[0, 0] = 1.
E[1, 1] = 1.
f = zeros(p)
proj = (E, f)  # proj(x) = E * x + f

vertices = pypoman.project_polytope(proj, ineq, eq, method='bretl')

if __name__ == "__main__":   # plot projected polytope
    import pylab
    pylab.ion()
    pylab.figure()
    pypoman.plot_polygon(vertices)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pypoman-0.5.2.tar.gz (12.4 kB view details)

Uploaded Source

File details

Details for the file pypoman-0.5.2.tar.gz.

File metadata

  • Download URL: pypoman-0.5.2.tar.gz
  • Upload date:
  • Size: 12.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pypoman-0.5.2.tar.gz
Algorithm Hash digest
SHA256 65236a77ada5fb80d88ec142b9e9539162522ba4068ff8e9f1245f85fb18b0df
MD5 01f1275b68e343684c02ffc8e716ee64
BLAKE2b-256 d2be84e2083e1e6e629baea83d4444f969c8cc4b321018bae03f9da19188cf06

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page