Skip to main content

Polyhedron and polytope manipulation in Python

Project description

This library implements common operations over convex polyhedra such as polytope projection, double description (conversion between halfspace and vertex representations), computing the Chebyshev center, etc.

See the complete API documentation for details.

Examples

Vertex enumeration

We can compute the list of vertices of a polytope described in halfspace representation by A * x <= b:

import numpy
import pypoman

A = numpy.array([
    [-1,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0],
    [0, -1,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0],
    [0,  0, -1,  0,  0,  0,  0,  0,  0,  0,  0,  0],
    [0,  0,  0, -1,  0,  0,  0,  0,  0,  0,  0,  0],
    [0,  0,  0,  0, -1,  0,  0,  0,  0,  0,  0,  0],
    [0,  0,  0,  0,  0, -1,  0,  0,  0,  0,  0,  0],
    [0,  0,  0,  0,  0,  0, -1,  0,  0,  0,  0,  0],
    [0,  0,  0,  0,  0,  0,  0, -1,  0,  0,  0,  0],
    [0,  0,  0,  0,  0,  0,  0,  0, -1,  0,  0,  0],
    [0,  0,  0,  0,  0,  0,  0,  0,  0, -1,  0,  0],
    [0,  0,  0,  0,  0,  0,  0,  0,  0,  0, -1,  0],
    [0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0, -1],
    [1,  1,  1,  0,  0,  0,  0,  0,  0,  0,  0,  0],
    [0,  0,  0,  1,  1,  1,  0,  0,  0,  0,  0,  0],
    [0,  0,  0,  0,  0,  0,  1,  1,  1,  0,  0,  0],
    [0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  1,  1],
    [1,  0,  0,  1,  0,  0,  1,  0,  0,  1,  0,  0],
    [0,  1,  0,  0,  1,  0,  0,  1,  0,  0,  1,  0],
    [0,  0,  1,  0,  0,  1,  0,  0,  1,  0,  0,  1]])
b = numpy.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 2, 2, 1, 2, 3])
vertices = pypoman.compute_polytope_vertices(A, b)

Polytope projection

Let us project an n-dimensional polytope over x = [x_1 ... x_n] onto its first two coordinates proj(x) = [x_1 x_2]:

import pypoman
from numpy import array, eye, ones, vstack, zeros

n = 10  # dimension of the original polytope
p = 2   # dimension of the projected polytope

# Original polytope:
# - inequality constraints: \forall i, |x_i| <= 1
# - equality constraint: sum_i x_i = 0
A = vstack([+eye(n), -eye(n)])
b = ones(2 * n)
C = ones(n).reshape((1, n))
d = array([0])
ineq = (A, b)  # A * x <= b
eq = (C, d)    # C * x == d

# Projection is proj(x) = [x_0 x_1]
E = zeros((p, n))
E[0, 0] = 1.
E[1, 1] = 1.
f = zeros(p)
proj = (E, f)  # proj(x) = E * x + f

vertices = pypoman.project_polytope(proj, ineq, eq, method='bretl')

if __name__ == "__main__":   # plot projected polytope
    import pylab
    pylab.ion()
    pylab.figure()
    pypoman.plot_polygon(vertices)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pypoman-0.5.4.tar.gz (12.5 kB view details)

Uploaded Source

File details

Details for the file pypoman-0.5.4.tar.gz.

File metadata

  • Download URL: pypoman-0.5.4.tar.gz
  • Upload date:
  • Size: 12.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.12.4 setuptools/38.2.4 requests-toolbelt/0.8.0 tqdm/4.23.3 CPython/2.7.6

File hashes

Hashes for pypoman-0.5.4.tar.gz
Algorithm Hash digest
SHA256 52a649f7f5cb44d74e47688d8c5e943ddab9bce9f04b6f0676305b78c0ac1c66
MD5 5b79fea1281ff7f92f6720b867e99255
BLAKE2b-256 05e6c9b51a224e6bee98f8b8655dfc76208ffe426ca9477b5ebabd01fd930a74

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page