Skip to main content

Interface to the Predict satellite tracking and orbital prediction library

Project description

ci

PyPredict

NOTE: To preserve compatibility with predict, pypredict uses north latitude and west longitude for terrestrial coordinates.

Do you want accurate and time-tested satellite tracking and pass prediction in a convenient python wrapper? You're in the right place.

PyPredict is a C Python extension directly adapted from the ubiquitous predict satellite tracking command line application. Originally written for the commodore 64, predict has a proven pedigree; We just aim to provide a convenient API. PyPredict is a port of the predict codebase and should yield identical results.

If you think you've found an error in pypredict, please include output from predict on same inputs to the bug report.
If you think you've found a bug in predict, please report and we'll coordinate with upstream.

Installation

sudo apt-get install python-dev
sudo python setup.py install

Usage

Observe a satellite (relative to a position on earth)

import predict
tle = """0 LEMUR 1
1 40044U 14033AL  15013.74135905  .00002013  00000-0  31503-3 0  6119
2 40044 097.9584 269.2923 0059425 258.2447 101.2095 14.72707190 30443"""
qth = (37.771034, 122.413815, 7)  # lat (N), long (W), alt (meters)
predict.observe(tle, qth) # optional time argument defaults to time.time()
# => {'altitude': 676.8782276657903,
#     'azimuth': 96.04762045174824,
#     'beta_angle': -27.92735429908726,
#     'decayed': 0,
#     'doppler': 1259.6041017128405,
#     'eci_obs_x': -2438.227652191655,
#     'eci_obs_y': -4420.154476060397,
#     'eci_obs_z': 3885.390601342013,
#     'eci_sun_x': 148633398.020844,
#     'eci_sun_y': -7451536.44122029,
#     'eci_sun_z': -3229999.50056359,
#     'eci_vx': 0.20076213530665032,
#     'eci_vy': -1.3282146055077213,
#     'eci_vz': 7.377067234096598,
#     'eci_x': 6045.827328897242,
#     'eci_y': -3540.5885778261277,
#     'eci_z': -825.4065096776636,
#     'eclipse_depth': -87.61858291647795,
#     'elevation': -43.711904591801726,
#     'epoch': 1521290038.347793,
#     'footprint': 5633.548906707907,
#     'geostationary': 0,
#     'has_aos': 1,
#     'latitude': -6.759563817939698,
#     'longitude': 326.1137007912563,
#     'name': '0 LEMUR 1',
#     'norad_id': 40044,
#     'orbit': 20532,
#     'orbital_model': 'SGP4',
#     'orbital_phase': 145.3256815318047,
#     'orbital_velocity': 26994.138671706416,
#     'slant_range': 9743.943478523843,
#     'sunlit': 1,
#     'visibility': 'D'
#    }

Show upcoming transits of satellite over ground station

# start and stop transit times as UNIX timestamp
transit_start = 1680775200
transit_stop = 1681034400

p = predict.transits(tle, qth, transit_start, transit_stop)

print("Start of Transit\tTransit Duration (s)\tPeak Elevation")
for transit in p:
    print(f"{transit.start}\t{transit.duration()}\t{transit.peak()['elevation']}")

Modeling an entire constellation

Generating transits for a lot of satellites over a lot of ground stations can be slow. Luckily, generating transits for each satellite-groundstation pair can be parallelized for a big speed-up.

import itertools
from multiprocessing.pool import Pool
import time

import predict
import requests

# Define a function that returns arguments for all the transits() calls you want to make
def _transits_call_arguments():
    now = time.time()
    tle = requests.get('http://tle.spire.com/25544').text.rstrip()
    for latitude in range(-90, 91, 15):
        for longitude in range(-180, 181, 15):
            qth = (latitude, longitude, 0)
            yield {'tle': tle, 'qth': qth, 'ending_before': now+60*60*24*7}

# Define a function that calls the transit function on a set of arguments and does per-transit processing
def _transits_call_fx(kwargs):
    try:
        transits = list(predict.transits(**kwargs))
        return [t.above(10) for t in transits]
    except predict.PredictException:
        pass

# Map the transit() caller across all the arguments you want, then flatten results into a single list
pool = Pool(processes=10)
array_of_results = pool.map(_transits_call_fx, _transits_call_arguments())
flattened_results = list(itertools.chain.from_iterable(filter(None, array_of_results)))
transits = flattened_results

NOTE: If precise accuracy isn't necessary (for modeling purposes, for example) setting the tolerance argument to the above call to a larger value, say 1 degree, can provide a significant performance boost.

Call predict analogs directly

predict.quick_find(tle.split('\n'), time.time(), (37.7727, 122.407, 25))
predict.quick_predict(tle.split('\n'), time.time(), (37.7727, 122.407, 25))

API

observe(tle, qth[, at=None])  
    Return an observation of a satellite relative to a groundstation.
    qth groundstation coordinates as (lat(N),long(W),alt(m))
    If at is not defined, defaults to current time (time.time())
    Returns an "observation" or dictionary containing:  
        altitude _ altitude of satellite in kilometers
        azimuth - azimuth of satellite in degrees from perspective of groundstation.
        beta_angle
        decayed - 1 if satellite has decayed out of orbit, 0 otherwise.
        doppler - doppler shift between groundstation and satellite.
        eci_obs_x
        eci_obs_y
        eci_obs_z
        eci_sun_x
        eci_sun_y
        eci_sun_z
        eci_vx
        eci_vy
        eci_vz
        eci_x
        eci_y
        eci_z
        eclipse_depth
        elevation - elevation of satellite in degrees from perspective of groundstation.
        epoch - time of observation in seconds (unix epoch)
        footprint
        geostationary - 1 if satellite is determined to be geostationary, 0 otherwise.
        has_aos - 1 if the satellite will eventually be visible from the groundstation
        latitude - north latitude of point on earth directly under satellite.
        longitude - west longitude of point on earth directly under satellite.
        name - name of satellite from first line of TLE.
        norad_id - NORAD id of satellite.
        orbit
        orbital_phase
        orbital_model
        orbital_velocity
        slant_range - distance to satellite from groundstation in meters.
        sunlit - 1 if satellite is in sunlight, 0 otherwise.
        visibility
transits(tle, qth[, ending_after=None][, ending_before=None])  
    Returns iterator of Transit objects representing passes of tle over qth.  
    If ending_after is not defined, defaults to current time  
    If ending_before is not defined, the iterator will yield until calculation failure.

NOTE: We yield passes based on their end time. This means we'll yield currently active passes in the two-argument invocation form, but their start times will be in the past.

Transit(tle, qth, start, end)  
    Utility class representing a pass of a satellite over a groundstation.
    Instantiation parameters are parsed and made available as fields.
    duration()  
        Returns length of transit in seconds
    peak(epsilon=0.1)  
        Returns epoch time where transit reaches maximum elevation (within ~epsilon)
    at(timestamp)  
        Returns observation during transit via quick_find(tle, timestamp, qth)
    aboveb(elevation, tolerance)
        Returns portion of transit above elevation. If the entire transit is below the target elevation, both
        endpoints will be set to the peak and the duration will be zero. If a portion of the transit is above
        the elevation target, the endpoints will be between elevation and elevation + tolerance (unless
        endpoint is already above elevation, in which case it will be unchanged)
quick_find(tle[, time[, (lat, long, alt)]])  
    time defaults to current time   
    (lat, long, alt) defaults to values in ~/.predict/predict.qth  
    Returns observation dictionary equivalent to observe(tle, time, (lat, long, alt))
quick_predict(tle[, time[, (lat, long, alt)]])  
        Returns an array of observations for the next pass as calculated by predict.
        Each observation is identical to that returned by quick_find.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pypredict-1.7.1.tar.gz (43.2 kB view details)

Uploaded Source

Built Distributions

pypredict-1.7.1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_28_x86_64.whl (124.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64 manylinux: glibc 2.5+ x86-64

pypredict-1.7.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_28_x86_64.whl (124.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64 manylinux: glibc 2.5+ x86-64

pypredict-1.7.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_28_x86_64.whl (123.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64 manylinux: glibc 2.5+ x86-64

pypredict-1.7.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_28_x86_64.whl (124.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64 manylinux: glibc 2.5+ x86-64

pypredict-1.7.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_28_x86_64.whl (123.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64 manylinux: glibc 2.5+ x86-64

pypredict-1.7.1-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl (109.2 kB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.5+ x86-64

pypredict-1.7.1-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (109.2 kB view details)

Uploaded CPython 2.7m manylinux: glibc 2.5+ x86-64

File details

Details for the file pypredict-1.7.1.tar.gz.

File metadata

  • Download URL: pypredict-1.7.1.tar.gz
  • Upload date:
  • Size: 43.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pypredict-1.7.1.tar.gz
Algorithm Hash digest
SHA256 a9742a59237bcee6592e4af40565903a97a8f6d515ecdf92db3ae93e5a5afc14
MD5 fe0ef940b178481fcc70e90849b2e9bf
BLAKE2b-256 a59f5fcba05949f63908a073d88dcc9b1c3da677a4dacd64e410ea5bfccf9c03

See more details on using hashes here.

File details

Details for the file pypredict-1.7.1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pypredict-1.7.1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 bd1940b22906c74a35ea003c3b85c8ca22c4a6d9d31b1c490770695884cfd1fc
MD5 8faa1d554e511801dd6099cd6cf62cae
BLAKE2b-256 7e65713cbce7c7e0502727d1196b94706f4e6ca50e0a821bbf57e11c66487a8c

See more details on using hashes here.

File details

Details for the file pypredict-1.7.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pypredict-1.7.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 9307f56c27a769834dc31c4d6204d8d93619004e7630da33bee821f2b64b5527
MD5 34adfab99660cc28e4d1e611a15569aa
BLAKE2b-256 9ace4726c1a92d495bc1d229c09ab830e169124b250c9afb5079b0230b29c354

See more details on using hashes here.

File details

Details for the file pypredict-1.7.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pypredict-1.7.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 35f39c017128d88afea116fe9ba7762c6804b2c034a5f858c501014c1fee2792
MD5 0c250534409a0c3ee32b2dd9e4f39fd4
BLAKE2b-256 84cf951a919022bcdfa81a5f313f6a936e2d3c00084c93c163db4f71dda908d6

See more details on using hashes here.

File details

Details for the file pypredict-1.7.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pypredict-1.7.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 7f159a44d37a18849d1a46717b88ffe4df3bdc6f4b8273449aae5eefba09599d
MD5 ce3d0972f60435d10c46001ee9917e83
BLAKE2b-256 e5869af7e4f280790b5cf408afc6453e886e763dc987935d43ba0280584356b7

See more details on using hashes here.

File details

Details for the file pypredict-1.7.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pypredict-1.7.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 8e65c4f40d55ea88ebf7afe6df8a8df6157fbcaff8bc7a6bdabf1d2af1d17fd6
MD5 8c37e2ddd56fbfaf46abacd087842bd6
BLAKE2b-256 8edd22b7b5beb7d3f54d0962227354f04a2f21593300aa669a2d08c49679a73c

See more details on using hashes here.

File details

Details for the file pypredict-1.7.1-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pypredict-1.7.1-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 3ab430372af8237d60b2210b5ebf2f63e51ca62a63c5ffb72a068589b553fabe
MD5 bd46899f6dce53d8f96fb6513ce17efd
BLAKE2b-256 2fc6edd2c295e28be33ae74f79b01552d056f8863bc734c626d9e0b5e59f2344

See more details on using hashes here.

File details

Details for the file pypredict-1.7.1-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pypredict-1.7.1-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f1b921570fdf2d56c095305fb1fd368ddf1ad6f19769b48ed86b799960d29529
MD5 d4e3f3aba6cd789af72ad1bd0d2f7d1a
BLAKE2b-256 2d8056fb47fbab0dc5175857f8b88d0ac31b8920b0f92ce652eabd747b37cbe7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page