Skip to main content

Interface to the Predict satellite tracking and orbital prediction library

Project description

ci

PyPredict

NOTE: To preserve compatibility with predict, pypredict uses north latitude and west longitude for terrestrial coordinates.

Do you want accurate and time-tested satellite tracking and pass prediction in a convenient python wrapper? You're in the right place.

PyPredict is a C Python extension directly adapted from the ubiquitous predict satellite tracking command line application. Originally written for the commodore 64, predict has a proven pedigree; We just aim to provide a convenient API. PyPredict is a port of the predict codebase and should yield identical results.

If you think you've found an error in pypredict, please include output from predict on same inputs to the bug report.
If you think you've found a bug in predict, please report and we'll coordinate with upstream.

Installation

sudo apt-get install python-dev
sudo python setup.py install

Usage

Observe a satellite (relative to a position on earth)

import predict
tle = """0 LEMUR 1
1 40044U 14033AL  15013.74135905  .00002013  00000-0  31503-3 0  6119
2 40044 097.9584 269.2923 0059425 258.2447 101.2095 14.72707190 30443"""
qth = (37.771034, 122.413815, 7)  # lat (N), long (W), alt (meters)
predict.observe(tle, qth) # optional time argument defaults to time.time()
# => {'altitude': 676.8782276657903,
#     'azimuth': 96.04762045174824,
#     'beta_angle': -27.92735429908726,
#     'decayed': 0,
#     'doppler': 1259.6041017128405,
#     'eci_obs_x': -2438.227652191655,
#     'eci_obs_y': -4420.154476060397,
#     'eci_obs_z': 3885.390601342013,
#     'eci_sun_x': 148633398.020844,
#     'eci_sun_y': -7451536.44122029,
#     'eci_sun_z': -3229999.50056359,
#     'eci_vx': 0.20076213530665032,
#     'eci_vy': -1.3282146055077213,
#     'eci_vz': 7.377067234096598,
#     'eci_x': 6045.827328897242,
#     'eci_y': -3540.5885778261277,
#     'eci_z': -825.4065096776636,
#     'eclipse_depth': -87.61858291647795,
#     'elevation': -43.711904591801726,
#     'epoch': 1521290038.347793,
#     'footprint': 5633.548906707907,
#     'geostationary': 0,
#     'has_aos': 1,
#     'latitude': -6.759563817939698,
#     'longitude': 326.1137007912563,
#     'name': '0 LEMUR 1',
#     'norad_id': 40044,
#     'orbit': 20532,
#     'orbital_model': 'SGP4',
#     'orbital_phase': 145.3256815318047,
#     'orbital_velocity': 26994.138671706416,
#     'slant_range': 9743.943478523843,
#     'sunlit': 1,
#     'visibility': 'D'
#    }

Show upcoming transits of satellite over ground station

# start and stop transit times as UNIX timestamp
transit_start = 1680775200
transit_stop = 1681034400

p = predict.transits(tle, qth, transit_start, transit_stop)

print("Start of Transit\tTransit Duration (s)\tPeak Elevation")
for transit in p:
    print(f"{transit.start}\t{transit.duration()}\t{transit.peak()['elevation']}")

Modeling an entire constellation

Generating transits for a lot of satellites over a lot of ground stations can be slow. Luckily, generating transits for each satellite-groundstation pair can be parallelized for a big speed-up.

import itertools
from multiprocessing.pool import Pool
import time

import predict
import requests

# Define a function that returns arguments for all the transits() calls you want to make
def _transits_call_arguments():
    now = time.time()
    tle = requests.get('http://tle.spire.com/25544').text.rstrip()
    for latitude in range(-90, 91, 15):
        for longitude in range(-180, 181, 15):
            qth = (latitude, longitude, 0)
            yield {'tle': tle, 'qth': qth, 'ending_before': now+60*60*24*7}

# Define a function that calls the transit function on a set of arguments and does per-transit processing
def _transits_call_fx(kwargs):
    try:
        transits = list(predict.transits(**kwargs))
        return [t.above(10) for t in transits]
    except predict.PredictException:
        pass

# Map the transit() caller across all the arguments you want, then flatten results into a single list
pool = Pool(processes=10)
array_of_results = pool.map(_transits_call_fx, _transits_call_arguments())
flattened_results = list(itertools.chain.from_iterable(filter(None, array_of_results)))
transits = flattened_results

NOTE: If precise accuracy isn't necessary (for modeling purposes, for example) setting the tolerance argument to the above call to a larger value, say 1 degree, can provide a significant performance boost.

Call predict analogs directly

predict.quick_find(tle.split('\n'), time.time(), (37.7727, 122.407, 25))
predict.quick_predict(tle.split('\n'), time.time(), (37.7727, 122.407, 25))

API

observe(tle, qth[, at=None])  
    Return an observation of a satellite relative to a groundstation.
    qth groundstation coordinates as (lat(N),long(W),alt(m))
    If at is not defined, defaults to current time (time.time())
    Returns an "observation" or dictionary containing:  
        altitude _ altitude of satellite in kilometers
        azimuth - azimuth of satellite in degrees from perspective of groundstation.
        beta_angle
        decayed - 1 if satellite has decayed out of orbit, 0 otherwise.
        doppler - doppler shift between groundstation and satellite.
        eci_obs_x
        eci_obs_y
        eci_obs_z
        eci_sun_x
        eci_sun_y
        eci_sun_z
        eci_vx
        eci_vy
        eci_vz
        eci_x
        eci_y
        eci_z
        eclipse_depth
        elevation - elevation of satellite in degrees from perspective of groundstation.
        epoch - time of observation in seconds (unix epoch)
        footprint
        geostationary - 1 if satellite is determined to be geostationary, 0 otherwise.
        has_aos - 1 if the satellite will eventually be visible from the groundstation
        latitude - north latitude of point on earth directly under satellite.
        longitude - west longitude of point on earth directly under satellite.
        name - name of satellite from first line of TLE.
        norad_id - NORAD id of satellite.
        orbit
        orbital_phase
        orbital_model
        orbital_velocity
        slant_range - distance to satellite from groundstation in meters.
        sunlit - 1 if satellite is in sunlight, 0 otherwise.
        visibility
transits(tle, qth[, ending_after=None][, ending_before=None])  
    Returns iterator of Transit objects representing passes of tle over qth.  
    If ending_after is not defined, defaults to current time  
    If ending_before is not defined, the iterator will yield until calculation failure.

NOTE: We yield passes based on their end time. This means we'll yield currently active passes in the two-argument invocation form, but their start times will be in the past.

Transit(tle, qth, start, end)  
    Utility class representing a pass of a satellite over a groundstation.
    Instantiation parameters are parsed and made available as fields.
    duration()  
        Returns length of transit in seconds
    peak(epsilon=0.1)  
        Returns epoch time where transit reaches maximum elevation (within ~epsilon)
    at(timestamp)  
        Returns observation during transit via quick_find(tle, timestamp, qth)
    aboveb(elevation, tolerance)
        Returns portion of transit above elevation. If the entire transit is below the target elevation, both
        endpoints will be set to the peak and the duration will be zero. If a portion of the transit is above
        the elevation target, the endpoints will be between elevation and elevation + tolerance (unless
        endpoint is already above elevation, in which case it will be unchanged)
quick_find(tle[, time[, (lat, long, alt)]])  
    time defaults to current time   
    (lat, long, alt) defaults to values in ~/.predict/predict.qth  
    Returns observation dictionary equivalent to observe(tle, time, (lat, long, alt))
quick_predict(tle[, time[, (lat, long, alt)]])  
        Returns an array of observations for the next pass as calculated by predict.
        Each observation is identical to that returned by quick_find.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pypredict-1.7.2.tar.gz (48.6 kB view details)

Uploaded Source

Built Distributions

pypredict-1.7.2-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_28_x86_64.whl (123.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64 manylinux: glibc 2.5+ x86-64

pypredict-1.7.2-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_28_x86_64.whl (123.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64 manylinux: glibc 2.5+ x86-64

pypredict-1.7.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_28_x86_64.whl (123.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64 manylinux: glibc 2.5+ x86-64

pypredict-1.7.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_28_x86_64.whl (123.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64 manylinux: glibc 2.5+ x86-64

pypredict-1.7.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_28_x86_64.whl (122.9 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64 manylinux: glibc 2.5+ x86-64

pypredict-1.7.2-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl (108.5 kB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.5+ x86-64

pypredict-1.7.2-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (108.5 kB view details)

Uploaded CPython 2.7m manylinux: glibc 2.5+ x86-64

File details

Details for the file pypredict-1.7.2.tar.gz.

File metadata

  • Download URL: pypredict-1.7.2.tar.gz
  • Upload date:
  • Size: 48.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.12

File hashes

Hashes for pypredict-1.7.2.tar.gz
Algorithm Hash digest
SHA256 c2a7889102a6c7a579b7b8704b491f63b60162810e89b72d09eff0d975ed3beb
MD5 590fafb2fd8d0ca80cfd50eaf7d189d5
BLAKE2b-256 70f2e1041deefb8ba480547877e6d8d65c2084fdf9ca69a0df21d9bcfc3f6cbd

See more details on using hashes here.

File details

Details for the file pypredict-1.7.2-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pypredict-1.7.2-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 a10b4ffdee63b8bf18a9917eb68f1a905647a9738803017a4f3f576c6b8cf51c
MD5 de54f1f8dde4896311344bb694828a6b
BLAKE2b-256 a474e36082e3b731e2effa938a10ae8be611db9d29499c78053ceddaa80623cb

See more details on using hashes here.

File details

Details for the file pypredict-1.7.2-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pypredict-1.7.2-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 cc06aaec93c5645fdfd5c556632adde4d5b741d8e32f46f03b6a439a2e9a5dce
MD5 a8ffc7bd98b2ffc62553e8432c4210ce
BLAKE2b-256 d536885f69ad5228606ad947e079e838e186ade0ec73a36227933644e400700c

See more details on using hashes here.

File details

Details for the file pypredict-1.7.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pypredict-1.7.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 36046b4c9484627eb3d7591ea6c9eb6ac4a80a905123fea6d469f241b7e7496e
MD5 c22fc1e5c9dcd5ed142db4b80eb945cf
BLAKE2b-256 45c9404a312e6afdf196d999baee1fca36ed668ef5a715d9205615124835018f

See more details on using hashes here.

File details

Details for the file pypredict-1.7.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pypredict-1.7.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 d6d00d263a5449c3a37325e64f264e864ffb6f6be8c15851ea3fb6746722e8c4
MD5 b7626878236e1bbc6d1d365d0cc7871f
BLAKE2b-256 49e3b73920ba9230d32de78f02592f0de880410624f64747b2275b6084fe9e75

See more details on using hashes here.

File details

Details for the file pypredict-1.7.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pypredict-1.7.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 e58ed1a87f6067edcbe55ea9a4e2bb4d37baf4d6afa846629b4cfb5815c1c12d
MD5 fc585b47c336d737b2136c7cb94e7445
BLAKE2b-256 53c8af141af35f1663f41598a7fb8f986afba8ac0f6259b9086134349d981825

See more details on using hashes here.

File details

Details for the file pypredict-1.7.2-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pypredict-1.7.2-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7e4c556abab554b4334ee3b6bc7ab8515a1dfbc103f85ba0407b88ca773c723a
MD5 be65958b460798ccbc6bc0f5a4977777
BLAKE2b-256 1a0dd0f5fd120a93a3ade184f2b9307850840ace4c7511804f9481a261d6714a

See more details on using hashes here.

File details

Details for the file pypredict-1.7.2-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pypredict-1.7.2-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 24aaaeb982fd2747e6944e6aa0d5fa267530d8fcea20355467ebae2a5e46f920
MD5 c04b8a67544441c2caaab5d768679e79
BLAKE2b-256 50f84a3a6e89583f0b952dbed141018102670bfa1c374c017acc0d440a5db168

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page