Skip to main content

A Python implementation of the preprocessing pipeline (PREP) for EEG data.

Project description

[![Build Status](https://travis-ci.org/sappelhoff/pyprep.svg?branch=master)](https://travis-ci.org/sappelhoff/pyprep) [![codecov](https://codecov.io/gh/sappelhoff/pyprep/branch/master/graph/badge.svg)](https://codecov.io/gh/sappelhoff/pyprep) [![Documentation Status](https://readthedocs.org/projects/pyprep/badge/?version=latest)](http://pyprep.readthedocs.io/en/latest/?badge=latest) [![PyPI version](https://badge.fury.io/py/pyprep.svg)](https://badge.fury.io/py/pyprep)

# pyprep

A python implementation of the Preprocessing Pipeline (PREP) for EEG data.

Working with [MNE-Python](https://www.martinos.org/mne/stable/index.html) for EEG data processing and analysis.

For a basic use example, see [the documentation.](http://pyprep.readthedocs.io/en/latest/examples.html)

Also contains a function to detect outlier epochs inspired by the FASTER algorithm.

# Installation

Probably easiest through:

pip install pyprep

For development version:

`bash git clone https://github.com/sappelhoff/pyprep #clone pyprep locally cd pyprep #go to pyprep directory pip install -r requirements.txt #install all dependencies pip install -e . #install pyprep ` # Reference Bigdely-Shamlo, N., Mullen, T., Kothe, C., Su, K.-M., & Robbins, K. A. (2015). The PREP pipeline: standardized preprocessing for large-scale EEG analysis. Frontiers in Neuroinformatics, 9, 16. doi: [10.3389/fninf.2015.00016](https://doi.org/10.3389/fninf.2015.00016)

Nolan, H., Whelan, R., & Reilly, R. B. (2010). FASTER: fully automated statistical thresholding for EEG artifact rejection. Journal of neuroscience methods, 192(1), 152-162. doi: [10.1016/j.jneumeth.2010.07.015](https://doi.org/10.1016/j.jneumeth.2010.07.015)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
pyprep-0.2.2-py2.py3-none-any.whl (11.8 kB) Copy SHA256 hash SHA256 Wheel py2.py3
pyprep-0.2.2.tar.gz (11.8 kB) Copy SHA256 hash SHA256 Source None

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page