A Python implementation of the preprocessing pipeline (PREP) for EEG data.
Project description
[![Build Status](https://travis-ci.org/sappelhoff/pyprep.svg?branch=master)](https://travis-ci.org/sappelhoff/pyprep) [![codecov](https://codecov.io/gh/sappelhoff/pyprep/branch/master/graph/badge.svg)](https://codecov.io/gh/sappelhoff/pyprep) [![Documentation Status](https://readthedocs.org/projects/pyprep/badge/?version=latest)](http://pyprep.readthedocs.io/en/latest/?badge=latest) [![PyPI version](https://badge.fury.io/py/pyprep.svg)](https://badge.fury.io/py/pyprep)
# pyprep
A python implementation of the Preprocessing Pipeline (PREP) for EEG data.
Working with [MNE-Python](https://www.martinos.org/mne/stable/index.html) for EEG data processing and analysis.
For a basic use example, see [the documentation.](http://pyprep.readthedocs.io/en/latest/examples.html)
Also contains a function to detect outlier epochs inspired by the FASTER algorithm.
# Installation
Probably easiest through:
pip install pyprep
For development version:
`bash git clone https://github.com/sappelhoff/pyprep #clone pyprep locally cd pyprep #go to pyprep directory pip install -r requirements.txt #install all dependencies pip install -e . #install pyprep ` # Reference Bigdely-Shamlo, N., Mullen, T., Kothe, C., Su, K.-M., & Robbins, K. A. (2015). The PREP pipeline: standardized preprocessing for large-scale EEG analysis. Frontiers in Neuroinformatics, 9, 16. doi: [10.3389/fninf.2015.00016](https://doi.org/10.3389/fninf.2015.00016)
Nolan, H., Whelan, R., & Reilly, R. B. (2010). FASTER: fully automated statistical thresholding for EEG artifact rejection. Journal of neuroscience methods, 192(1), 152-162. doi: [10.1016/j.jneumeth.2010.07.015](https://doi.org/10.1016/j.jneumeth.2010.07.015)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for pyprep-0.1.1-py2.py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4090347d537afc0f5ee9ec463fff481a0511cd0b5e9c6a78e4f22fc9c2dd6b70 |
|
MD5 | 2cde218ccad33ef2883e4330b6fec49b |
|
BLAKE2b-256 | c6215194ccb270d08971ed6c91f1d17c011834c32c8c092d67afade7b26bd8e6 |