Skip to main content

Probabilistic data structures in python

Project description

License GitHub release Build Status Test Coverage Documentation Status Pypi Release Downloads

pyprobables is a pure-python library for probabilistic data structures. The goal is to provide the developer with a pure-python implementation of common probabilistic data-structures to use in their work.

To achieve better raw performance, it is recommended supplying an alternative hashing algorithm that has been compiled in C. This could include using the md5 and sha512 algorithms provided or installing a third party package and writing your own hashing strategy. Some options include the murmur hash mmh3 or those from the pyhash library. Each data object in pyprobables makes it easy to pass in a custom hashing function.

Read more about how to use Supplying a pre-defined, alternative hashing strategies or Defining hashing function using the provided decorators.

Installation

Pip Installation:

$ pip install pyprobables

To install from source:

To install pyprobables, simply clone the repository on GitHub, then run from the folder:

$ python setup.py install

pyprobables supports python 3.6 - 3.11+

For python 2.7 support, install release 0.3.2

$ pip install pyprobables==0.3.2

API Documentation

The documentation of is hosted on readthedocs.io

You can build the documentation locally by running:

$ pip install sphinx
$ cd docs/
$ make html

Automated Tests

To run automated tests, one must simply run the following command from the downloaded folder:

$ python setup.py test

Quickstart

Import pyprobables and setup a Bloom Filter

from probables import BloomFilter
blm = BloomFilter(est_elements=1000, false_positive_rate=0.05)
blm.add('google.com')
blm.check('facebook.com')  # should return False
blm.check('google.com')  # should return True

Import pyprobables and setup a Count-Min Sketch

from probables import CountMinSketch
cms = CountMinSketch(width=1000, depth=5)
cms.add('google.com')  # should return 1
cms.add('facebook.com', 25)  # insert 25 at once; should return 25

Import pyprobables and setup a Cuckoo Filter

from probables import CuckooFilter
cko = CuckooFilter(capacity=100, max_swaps=10)
cko.add('google.com')
cko.check('facebook.com')  # should return False
cko.check('google.com')  # should return True

Import pyprobables and setup a Quotient Filter

from probables import QuotientFilter
qf = QuotientFilter(quotient=24)
qf.add('google.com')
qf.check('facebook.com')  # should return False
qf.check('google.com')  # should return True

Supplying a pre-defined, alternative hashing strategies

from probables import BloomFilter
from probables.hashes import default_sha256
blm = BloomFilter(est_elements=1000, false_positive_rate=0.05,
                  hash_function=default_sha256)
blm.add('google.com')
blm.check('facebook.com')  # should return False
blm.check('google.com')  # should return True

Defining hashing function using the provided decorators

import mmh3  # murmur hash 3 implementation (pip install mmh3)
from probables.hashes import hash_with_depth_bytes
from probables import BloomFilter

@hash_with_depth_bytes
def my_hash(key, depth):
    return mmh3.hash_bytes(key, seed=depth)

blm = BloomFilter(est_elements=1000, false_positive_rate=0.05, hash_function=my_hash)
import hashlib
from probables.hashes import hash_with_depth_int
from probables.constants import UINT64_T_MAX
from probables import BloomFilter

@hash_with_depth_int
def my_hash(key, seed=0, encoding="utf-8"):
    max64mod = UINT64_T_MAX + 1
    val = int(hashlib.sha512(key.encode(encoding)).hexdigest(), 16)
    val += seed  # not a good example, but uses the seed value
    return val % max64mod

blm = BloomFilter(est_elements=1000, false_positive_rate=0.05, hash_function=my_hash)

See the API documentation for other data structures available and the quickstart page for more examples!

Changelog

Please see the changelog for a list of all changes.

Backward Compatible Changes

If you are using previously exported probablistic data structures (v0.4.1 or below) and used the default hashing strategy, you will want to use the following code to mimic the original default hashing algorithm.

from probables import BloomFilter
from probables.hashes import hash_with_depth_int

@hash_with_depth_int
def old_fnv1a(key, depth=1):
    return tmp_fnv_1a(key)

def tmp_fnv_1a(key):
    max64mod = UINT64_T_MAX + 1
    hval = 14695981039346656073
    fnv_64_prime = 1099511628211
    tmp = map(ord, key)
    for t_str in tmp:
        hval ^= t_str
        hval *= fnv_64_prime
        hval %= max64mod
    return hval

blm = BloomFilter(filpath="old-file-path.blm", hash_function=old_fnv1a)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyprobables-0.6.0.tar.gz (33.6 kB view details)

Uploaded Source

Built Distribution

pyprobables-0.6.0-py3-none-any.whl (40.0 kB view details)

Uploaded Python 3

File details

Details for the file pyprobables-0.6.0.tar.gz.

File metadata

  • Download URL: pyprobables-0.6.0.tar.gz
  • Upload date:
  • Size: 33.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for pyprobables-0.6.0.tar.gz
Algorithm Hash digest
SHA256 a4e72bdb4d3513121b33377728c9eafd2ae8495d5201d6a90abc3d52d9a17901
MD5 ac704a95b92585410ec1807f5872e86f
BLAKE2b-256 1dfa3dfaaa1ff7ce5867a890fd3d86dfb24ba7da1f5c0fdd03d7e8d86a1afa9a

See more details on using hashes here.

File details

Details for the file pyprobables-0.6.0-py3-none-any.whl.

File metadata

  • Download URL: pyprobables-0.6.0-py3-none-any.whl
  • Upload date:
  • Size: 40.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for pyprobables-0.6.0-py3-none-any.whl
Algorithm Hash digest
SHA256 85a23655e2d5e87a99e01003be8b48e9dfcc0c45e65c02f84f777b99235347db
MD5 66eba07abd7518f6c273c45d70294399
BLAKE2b-256 2548985c0f0a8a6d62a7d2591e49732254c13df1ea7d33a508a3e528ebe9a666

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page