This is a pre-production deployment of Warehouse, however changes made here WILL affect the production instance of PyPI.
Latest Version Dependencies status unknown Test status unknown Test coverage unknown
Project Description
# pyproteome

[![Build Status](https://img.shields.io/travis/white-lab/pyproteome.svg)](https://travis-ci.org/white-lab/pyproteome)
[![Coverage Status](https://img.shields.io/coveralls/white-lab/pyproteome.svg)](https://coveralls.io/r/white-lab/pyproteome?branch=master)
[![Documentation Status](https://readthedocs.org/projects/pyproteome/badge/?version=latest)](https://readthedocs.org/projects/pyproteome/?badge=latest)
[![Requirements Status](https://requires.io/github/white-lab/pyproteome/requirements.svg?branch=master)](https://requires.io/github/white-lab/pyproteome/requirements/?branch=master)
[![PyPI](https://img.shields.io/pypi/v/pyproteome.svg)](https://pypi.python.org/pypi/pyproteome)


Python library for analyzing mass spectrometry proteomics data.

## Installation

To install the core pyproteome package, run the following command:

```
pip install pyproteome
```

### Windows

If you are using Windows, it is easiest to use the latest version of
[Anaconda](https://www.continuum.io/downloads) for your Python installation, as
pyproteome requires several hard-to-install packages, such as NumPy and SciPy.
In addition, BioPython should be installed from a [binary or wheel package](http://biopython.org/wiki/Download)

Then, you can simply run the above `pip install pyproteome` command to install
this package and the rest of its dependencies.

### CAMV

pyproteome can use CAMV for data validation. If you have the executable
installed on your system, simply add "CAMV.exe" to your system path and
pyproteome will locate it automatically.

## Examples

The following is an example of code to load a searched run from [Discoverer](https://www.thermofisher.com/order/catalog/product/IQLAAEGABSFAKJMAUH)
normalizing the phosphotyrosine run to the media channel levels in a supernatant
dilution.

```
>>> from pyproteome import analysis, data_sets, levels,
>>> from collections import OrderedDict
>>> ck_channels = OrderedDict([
... ("126", "3130 CK"),
... ("127", "3131 CK-p25"),
... ("128", "3145 CK-p25"),
... ("129", "3146 CK-p25"),
... ("130", "3148 CK"),
... ("131", "3157 CK"),
... ])
>>> ck_groups = OrderedDict([
... ("CK-p25", ["127", "128", "129"]),
... ("CK", ["126", "130", "131"]),
... ])
>>> ck_name = "CK-p25 vs. CK, 2 weeks"
>>> ck_h1_py = data_sets.DataSet(
... mascot_name="2015-09-11-CKH1-pY-imac14-elute-pre35-colAaron250",
... channels=ck_channels,
... groups=ck_groups,
... name="CKH1",
... enrichments=["pY"],
... tissues=["Hippocampus"],
... )
... ck_h1_global = data_sets.DataSet(
... mascot_name="2015-09-18-CKH1-pY-2-sup-10-preRaven-colAaron250",
... channels=ck_channels,
... groups=ck_groups,
... name="CKH1",
... tissues=["Hippocampus"],
... merge_duplicates=False,
... merge_subsets=False,
... )
>>> ck_h1_channel_levels = levels.get_channel_levels(ck_h1_global.filter(ion_score_cutoff=20))
>>> ck_h1_py_norm = ck_h1_py.normalize(ck_h1_channel_levels)
>>> analysis.snr_table(ck_h1_py_norm.filter(p_cutoff=0.05), sort="Fold Change"))
```

## Directory Hierarchy

pyproteome expects a certain directory hierarchy in order to import data files
and interface with CAMV. This pattern is as follows:

```
base_directory/
BCA Protein Assays/
CAMV Output/
CAMV Sessions/
Mascot XMLs/
MS RAW/
MS Searched/
Scan Lists/
Scripts/
```

Under this scheme, all of your python code / IPython notebooks should go in the
`Scripts` directory.

See `pyproteome.paths` if you are using a custom directory hierarchy. i.e.:

```
>>> from pyproteome import paths
>>> paths.CAMV_SESS_DIR = "../CAMV Save/"
>>> paths.BCA_ASSAY_DIR = "../BCA/"
```
Release History

Release History

0.2.2

This version

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.2.0

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.1.0

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

Download Files

Download Files

TODO: Brief introduction on what you do with files - including link to relevant help section.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
pyproteome-0.2.2-py2.7.egg (141.3 kB) Copy SHA256 Checksum SHA256 2.7 Egg Sep 12, 2016
pyproteome-0.2.2-py3.3.egg (147.3 kB) Copy SHA256 Checksum SHA256 3.3 Egg Sep 12, 2016
pyproteome-0.2.2-py3.4.egg (145.5 kB) Copy SHA256 Checksum SHA256 3.4 Egg Sep 12, 2016
pyproteome-0.2.2-py3.5.egg (145.2 kB) Copy SHA256 Checksum SHA256 3.5 Egg Sep 12, 2016
pyproteome-0.2.2.tar.gz (48.6 kB) Copy SHA256 Checksum SHA256 Source Sep 12, 2016

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS HPE HPE Development Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting