Skip to main content

Python implementation of the Pattern Sequence Based Forecasting (PSF) algorithm

Project description

PyPSF

This project provides a python implementation of the Pattern Sequence Based Forecasting (PSF) algorithm. For a detailed description of the PSF algorithm and some of the practical issues I encountered when using it, see this PDF file.

Installation

pip install pypsf

Dependencies

  • scikit-learn
  • numpy

Example Usage

Applying PSF to the classic R "AirPassenger" dataset, which provides monthly totals of a US airline passengers, from 1949 to 1960.

import numpy as np
import matplotlib.pyplot as plt
from pypsf import Psf

plt.style.use("dark_background")

t_series = np.array([112, 118, 132, 129, 121, 135, 148, 148, 136, 119, 104, 118,
                     115, 126, 141, 135, 125, 149, 170, 170, 158, 133, 114, 140,
                     145, 150, 178, 163, 172, 178, 199, 199, 184, 162, 146, 166,
                     171, 180, 193, 181, 183, 218, 230, 242, 209, 191, 172, 194,
                     196, 196, 236, 235, 229, 243, 264, 272, 237, 211, 180, 201,
                     204, 188, 235, 227, 234, 264, 302, 293, 259, 229, 203, 229,
                     242, 233, 267, 269, 270, 315, 364, 347, 312, 274, 237, 278,
                     284, 277, 317, 313, 318, 374, 413, 405, 355, 306, 271, 306,
                     315, 301, 356, 348, 355, 422, 465, 467, 404, 347, 305, 336,
                     340, 318, 362, 348, 363, 435, 491, 505, 404, 359, 310, 337, 
                     360, 342, 406, 396, 420, 472, 548, 559, 463, 407, 362, 405,
                     417, 391, 419, 461, 472, 535, 622, 606, 508, 461, 390, 432])
train = t_series[:-28]
test = t_series[-28:]

psf = Psf(cycle_length=12, apply_diff=True, diff_periods=12)
psf.fit(train)

pred = psf.predict(len(test))

fig, ax = plt.subplots()
x_train = np.array(range(len(train)))
x_test_pred = np.array(range(len(test))) + x_train[-1]
ax.plot(x_train, train, c="lightblue")
ax.plot(x_test_pred, test, c="lightgreen")
ax.plot(x_test_pred, pred, c="tab:orange")
plt.legend(["Training", "Test", "Prediction"])
plt.tight_layout()
plt.show()

psf_prediction_plot

Parameters

class Psf

  • cycle_length: int
    The cycle length c
  • k: int (optional), default None
    The user-defined number of desired clusters when running K-means on the cycles
  • w: int (optional), default None
    The user-defined window size
  • suppress_warnings: bool (optional), default False
    Suppress all warnings
  • apply_diff: bool (optional), default False
    Apply first order differencing to the time series before applying PSF
  • diff_periods: int (optional), default 1
    Periods to shift for calculating difference, to allow for either ordinary or seasonal differencing. Ignore if apply_diff=False
  • detrend: bool (optional), default False
    Remove a linear trend from the series prior to applying PSF by fitting a simple linear regression model. The trend is subsequently re-added to the predictions.

Psf.fit

  • data:
    The input time series
  • k_values: iterable[int] (optional), default tuple(range(3, 12))
    The set of candidate values of k to test when finding the "best" k number of clusters based on the training data
  • w_values: iterable[int] (optional), default tuple(range(1, 20))
    The set of candidate values of w to test when finding the "best" window size w based on the training data

Psf.predict

  • n_ahead: int
    The number of values to predict

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pypsf-1.0.8.tar.gz (216.0 kB view details)

Uploaded Source

Built Distribution

pypsf-1.0.8-py3-none-any.whl (11.7 kB view details)

Uploaded Python 3

File details

Details for the file pypsf-1.0.8.tar.gz.

File metadata

  • Download URL: pypsf-1.0.8.tar.gz
  • Upload date:
  • Size: 216.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for pypsf-1.0.8.tar.gz
Algorithm Hash digest
SHA256 3ed89113a64ca03bf9da3a2a6047cd606c3500f5721afbab825808ce8c1a2f3c
MD5 825f22fdbaf952ed7ac210eee84deeb0
BLAKE2b-256 84d4267032d430388cdcfbc864b5514d5687f8468d44990e201b24015036f691

See more details on using hashes here.

File details

Details for the file pypsf-1.0.8-py3-none-any.whl.

File metadata

  • Download URL: pypsf-1.0.8-py3-none-any.whl
  • Upload date:
  • Size: 11.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for pypsf-1.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 7b7278b709d235f453f8265931c7ea70c1ae3a6ef72d0f81c06ae3348d607920
MD5 f1736f1449610241e390cd01b0b69c17
BLAKE2b-256 343f7dd9458564a4a992312f029110c17b486f21465d6014038abebf13a4085c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page