Skip to main content

Quantum Entanglement in Python

Project description

Quantum Entanglement in Python

CircleCI GitHub release Documentation Status Updates Python 3 pypi download

Version

The releases of pyqentangle 2.x.x is incompatible with previous releases.

The releases of pyqentangle 3.x.x is incompatible with previous releases.

Since release 3.1.0, the support for Python 2.7 and 3.5 has been decomissioned. Since release 3.3.0, support for Python 3.6 is diminished, but that for Python 3.11 is added.

Installation

This package can be installed using pip.

>>> pip install pyqentangle

To use it, enter

>>> import pyqentangle
>>> import numpy as np

Schmidt Decomposition for Discrete Bipartite States

We first express the bipartite state in terms of a tensor. For example, if the state is |01>+|10>, then express it as

>>> tensor = np.array([[0., np.sqrt(0.5)], [np.sqrt(0.5), 0.]])

To perform the Schmidt decompostion, just enter:

>>> pyqentangle.schmidt_decomposition(tensor)
[(0.7071067811865476, array([ 0., -1.]), array([-1., -0.])),
 (0.7071067811865476, array([-1.,  0.]), array([-0., -1.]))]

For each tuple in the returned list, the first element is the Schmidt coefficients, the second the component for first subsystem, and the third the component for the second subsystem.

Schmidt Decomposition for Continuous Bipartite States

We can perform Schmidt decomposition on continuous systems too. For example, define the following normalized wavefunction:

>>> fcn = lambda x1, x2: np.exp(-0.5 * (x1 + x2) ** 2) * np.exp(-(x1 - x2) ** 2) * np.sqrt(np.sqrt(8.) / np.pi)

Then perform the Schmidt decomposition,

>>> modes = pyqentangle.continuous_schmidt_decomposition(biwavefcn, -10., 10., -10., 10., keep=10)

where it describes the ranges of x1 and x2 respectively, and keep=10 specifies only top 10 Schmidt modes are kept. Then we can read the Schmidt coefficients:

>>> list(map(lambda dec: dec[0], modes))
[0.9851714310094161,
 0.1690286950361957,
 0.02900073920775954,
 0.004975740210361192,
 0.0008537020544076649,
 0.00014647211608480773,
 2.51306421011773e-05,
 4.311736522272035e-06,
 7.39777032460608e-07,
 1.2692567250688184e-07]

The second and the third elements in each tuple in the list decompositions are lambda functions for the modes of susbsystems A and B respectively. The Schmidt functions can be plotted:

>>> xarray = np.linspace(-10., 10., 100)

    plt.subplot(3, 2, 1)
    plt.plot(xarray, modes[0][1](xarray))
    plt.subplot(3, 2, 2)
    plt.plot(xarray, modes[0][2](xarray))

    plt.subplot(3, 2, 3)
    plt.plot(xarray, modes[1][1](xarray))
    plt.subplot(3, 2, 4)
    plt.plot(xarray, modes[1][2](xarray))

    plt.subplot(3, 2, 5)
    plt.plot(xarray, modes[2][1](xarray))
    plt.subplot(3, 2, 6)
    plt.plot(xarray, modes[2][2](xarray))

alt

Useful Links

Reference

  • Artur Ekert, Peter L. Knight, "Entangled quantum systems and the Schmidt decomposition", Am. J. Phys. 63, 415 (1995).

Acknowledgement

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyqentangle-4.0.3.tar.gz (14.6 kB view details)

Uploaded Source

Built Distribution

pyqentangle-4.0.3-py3-none-any.whl (12.0 kB view details)

Uploaded Python 3

File details

Details for the file pyqentangle-4.0.3.tar.gz.

File metadata

  • Download URL: pyqentangle-4.0.3.tar.gz
  • Upload date:
  • Size: 14.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.13

File hashes

Hashes for pyqentangle-4.0.3.tar.gz
Algorithm Hash digest
SHA256 5ebcf07513dc93d745500d676e19a22ec1877a2b601a5f8d69ec5386f9000ffd
MD5 8707cc7ce85feeb02c6f735722f2dd14
BLAKE2b-256 faa2ac8174a8f3e72537eae5927644d21d55f5b8bb5d6aca044e9ea5d7a88903

See more details on using hashes here.

File details

Details for the file pyqentangle-4.0.3-py3-none-any.whl.

File metadata

  • Download URL: pyqentangle-4.0.3-py3-none-any.whl
  • Upload date:
  • Size: 12.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.13

File hashes

Hashes for pyqentangle-4.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 acc5370615041afa1595df8c398b7c109a9b7aa50b7b7710b7d39099fd7b2fb1
MD5 f0e814405685004fb6a4cbf9231cb17c
BLAKE2b-256 0212156e18aa4ae63354a84cc2822843bafce2cbe88655031cb17065d1caac00

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page