Skip to main content

Fast implementation of the quantile regression with support for iid, robust, and cluster standard errors.

Project description

CircleCI PyPI PyPI - License PythonVersion Black

Pyqreg

Pyqreg implements the quantile regression algorithm with fast estimation method using the interior point method following the preprocessing procedure in Portnoy and Koenker (1997). It provides methods for estimating the asymptotic covariance matrix for i.i.d and heteroskedastic errors, as well as clustered errors following Parente and Silva (2013).

References

  • Stephen Portnoy. Roger Koenker. “The Gaussian hare and the Laplacian tortoise: computability of squared-error versus absolute-error estimators.” Statist. Sci. 12 (4) 279 - 300 (1997).

  • Koenker, R., Ng, P. A Frisch-Newton Algorithm for Sparse Quantile Regression. Acta Mathematicae Applicatae Sinica, English Series 21, 225–236 (2005).

  • Parente, Paulo and Santos Silva, João, (2013), Quantile regression with clustered data, No 1305, Discussion Papers, University of Exeter, Department of Economics.

Install

pyqreg requires

  • Python >= 3.6

  • Numpy

You can install the latest release with:

pip3 install pyqreg

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyqreg-0.3.7.tar.gz (244.2 kB view details)

Uploaded Source

File details

Details for the file pyqreg-0.3.7.tar.gz.

File metadata

  • Download URL: pyqreg-0.3.7.tar.gz
  • Upload date:
  • Size: 244.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.6.15

File hashes

Hashes for pyqreg-0.3.7.tar.gz
Algorithm Hash digest
SHA256 e2232ff2fd46ec91f9418e1b2c360ebed316e8e1e51ab269e57f2213c05e3881
MD5 63559eaad2899c9d7c631dbf6cf5319a
BLAKE2b-256 dc3efbbb050876f7cdba3ae0e1c4caa00cfd2dca4f893c68c09d90ebb11d2bbe

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page