Skip to main content

Python toolkit for Quafu-Cloud

Project description

PyQuafu

License

Introduction

PyQuafu is designed for users to construct, compile, and execute quantum circuits on quantum devices on Quafu using Python. With PyQuafu, you can interact with various real quantum backends provided by the experimental group from Quafu.

Installation

Install via PyPI

You can install PyQuafu directly from PyPI:

pip install pyquafu

Build from Source

Alternatively, you can build PyQuafu from the source:

pip install -r requirements.txt
python setup.py install

Graphviz Dependency

If you need to visualize Directed Acyclic Graphs (DAGs), ensure that the Graphviz software is installed on your system. Refer to the graphviz · PyPI page for installation guidance.

GPU Support

To install PyQuafu with GPU-based circuit simulation, you need to build from the source and ensure that the CUDA Toolkit is installed. Use the following command to install the GPU version:

python setup.py install -DUSE_GPU=ON

If you also have cuQuantum installed, you can install PyQuafu with cuQuantum support:

python setup.py install -DUSE_GPU=ON -DUSE_CUQUANTUM=ON

Documentation

For detailed documentation about usage, please visit the PyQuafu documentation website.

Note for Apple Silicon Mac Users

If you encounter the error "illegal hardware instruction" on an Apple silicon Mac, ensure that you have updated to the arm64 version of Anaconda. See this issue for more details.

Examples

Quantum Reinforcement Learning

This example demonstrates how quantum reinforcement learning interacts with Quafu to solve the CartPole environment. For more details, refer to the quantum-RL-with-quafu repository.

Author

This project is developed by the quantum cloud computing team at the Beijing Academy of Quantum Information Sciences.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyquafu-0.4.2-cp311-cp311-win_amd64.whl (301.7 kB view details)

Uploaded CPython 3.11 Windows x86-64

pyquafu-0.4.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (404.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyquafu-0.4.2-cp311-cp311-macosx_13_0_x86_64.whl (295.9 kB view details)

Uploaded CPython 3.11 macOS 13.0+ x86-64

pyquafu-0.4.2-cp311-cp311-macosx_13_0_arm64.whl (278.6 kB view details)

Uploaded CPython 3.11 macOS 13.0+ ARM64

pyquafu-0.4.2-cp310-cp310-win_amd64.whl (301.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

pyquafu-0.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (402.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyquafu-0.4.2-cp310-cp310-macosx_13_0_x86_64.whl (294.4 kB view details)

Uploaded CPython 3.10 macOS 13.0+ x86-64

pyquafu-0.4.2-cp310-cp310-macosx_13_0_arm64.whl (277.1 kB view details)

Uploaded CPython 3.10 macOS 13.0+ ARM64

pyquafu-0.4.2-cp39-cp39-win_amd64.whl (300.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyquafu-0.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (402.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyquafu-0.4.2-cp39-cp39-macosx_13_0_x86_64.whl (294.5 kB view details)

Uploaded CPython 3.9 macOS 13.0+ x86-64

pyquafu-0.4.2-cp39-cp39-macosx_13_0_arm64.whl (277.2 kB view details)

Uploaded CPython 3.9 macOS 13.0+ ARM64

pyquafu-0.4.2-cp38-cp38-win_amd64.whl (301.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

pyquafu-0.4.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (402.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyquafu-0.4.2-cp38-cp38-macosx_13_0_x86_64.whl (294.3 kB view details)

Uploaded CPython 3.8 macOS 13.0+ x86-64

pyquafu-0.4.2-cp38-cp38-macosx_13_0_arm64.whl (277.0 kB view details)

Uploaded CPython 3.8 macOS 13.0+ ARM64

File details

Details for the file pyquafu-0.4.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyquafu-0.4.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 301.7 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.11

File hashes

Hashes for pyquafu-0.4.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 63acee053dbeb7e87f678cd25940412d699c4f4bbf4a93302730034ca20a0676
MD5 a5688eea7d0348d3ceacf4574c87dbe3
BLAKE2b-256 56251755aefe64fa326bf7bdb939b712fa071d9bec742305265039d3145fea2c

See more details on using hashes here.

File details

Details for the file pyquafu-0.4.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyquafu-0.4.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 610f083c333b6474c1110e240c89204872e7c7a10f1ea4b03be62ef26cebb4c6
MD5 adc2032f03e453dc82187fc42d4d487c
BLAKE2b-256 eebdf29417789b43f1f9931b6eb98838a58bed7bb97824a3f5e7adf3ffa77bc3

See more details on using hashes here.

File details

Details for the file pyquafu-0.4.2-cp311-cp311-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for pyquafu-0.4.2-cp311-cp311-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 bfafac9197ffadaa589d1f7809fd183c993179900860b9158969b05dac9f2fa3
MD5 dbc07dfe6b72d1840df3490486dfecd8
BLAKE2b-256 55537e4102d896c9deff93b99f54c490cf2b9db38d7c4fb1b740dbb1899808cf

See more details on using hashes here.

File details

Details for the file pyquafu-0.4.2-cp311-cp311-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for pyquafu-0.4.2-cp311-cp311-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 04c8d8fdd3906fe5ae469465b00ddc4387c212ac4876898561cea0aa41f676ab
MD5 b740df2c00c41e6e76e627a29a29cb2d
BLAKE2b-256 d80f4aee366d8ee86364a825588d40fadde5d33a4b5e58a250cab67400436f45

See more details on using hashes here.

File details

Details for the file pyquafu-0.4.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyquafu-0.4.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 301.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.11

File hashes

Hashes for pyquafu-0.4.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 10125c6fdaa01c602612e73c0b6a7b97f7f48a164eb033363858e4a11961bf6a
MD5 853f49477869f337bc925e5a4f9dee1f
BLAKE2b-256 28a6f84b8851bf357722813f4f0a7be473069fc001e3c0f45ebcc0351c35d3f9

See more details on using hashes here.

File details

Details for the file pyquafu-0.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyquafu-0.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f34d34f78c958e468fbed29d56ecfd65688e16ef09426d7c0fc8a8e3fd642e9f
MD5 5058c20450397bb0529afe6092194880
BLAKE2b-256 0023363f619a9eca66abd5145b2bf072be374dbf354e17aadfc6d6311bdebffa

See more details on using hashes here.

File details

Details for the file pyquafu-0.4.2-cp310-cp310-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for pyquafu-0.4.2-cp310-cp310-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 a6e5ef12a3b51a5d891b30d89b60b9f8c0dc9326704cfcfe4a52137aa10a50ca
MD5 d3c40b9565912213b6c44c702c6cf08c
BLAKE2b-256 cdde3fa49570c4083b23a62662c4b89e5d2ec6d2c9d0a7529249e9c50e23594e

See more details on using hashes here.

File details

Details for the file pyquafu-0.4.2-cp310-cp310-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for pyquafu-0.4.2-cp310-cp310-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 75b86d647cb556ba3286c132ea99c183cf86d115217615112efbf421a61ce210
MD5 779a5ce5068755038ad10c04b757ff30
BLAKE2b-256 62af8a1aaf469788a14b9ab1eb09996af568641f152ba0f7e6acdca196bf5fff

See more details on using hashes here.

File details

Details for the file pyquafu-0.4.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyquafu-0.4.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 300.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.11

File hashes

Hashes for pyquafu-0.4.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 510403e96e42976244d0e308cdb23da562f3fd8f60313995ddf1f6097043ce7f
MD5 2185c43eb4575b20eb59498ee7b6d81a
BLAKE2b-256 e81b93c012948da65a476f9702c9cc71f2a1b971bca797eda3a903a91abe84be

See more details on using hashes here.

File details

Details for the file pyquafu-0.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyquafu-0.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 08eac2361672d7db77ffe37ef81092bca8b1d8a0fd6af95d242f8ba8314534e4
MD5 f757ab85ad99ea682695a0b6468f7385
BLAKE2b-256 65f32fd828642205ea4c25e01fcf212f706646e9e005832dd627ba641b44ab9c

See more details on using hashes here.

File details

Details for the file pyquafu-0.4.2-cp39-cp39-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for pyquafu-0.4.2-cp39-cp39-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 a90d228e2221a6f5ae3b3412881eef9a7181ffd5d4d3be45cfd3aae3216d15e4
MD5 0f168787010b0d80754256389cdc015e
BLAKE2b-256 e4c0f7354eb017f911ce4340ff737a908cbaf33c827080faa7124f1adfc399ab

See more details on using hashes here.

File details

Details for the file pyquafu-0.4.2-cp39-cp39-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for pyquafu-0.4.2-cp39-cp39-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 435e6645d977c2a4819b172a8fed93b2a73c49aaf20bef9c49ecce29ea8631d7
MD5 50892a6bd6c095965c4ae6a5f08fd135
BLAKE2b-256 047f510a5f33c3a024694663635c9e510d064fe1404b3ef2c1307545c7a8168b

See more details on using hashes here.

File details

Details for the file pyquafu-0.4.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyquafu-0.4.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 301.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.11

File hashes

Hashes for pyquafu-0.4.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b36fa3c9ad305281fee1541e876b98f9a33d4d15e6e1e8d7e612885270c49e65
MD5 deb3a24d5cd1e83b7c488dcb8bba9066
BLAKE2b-256 fb9bdb2db063f9a391a1017a2070e73e30f3b84416d6b0193a2a8aaa6db3e036

See more details on using hashes here.

File details

Details for the file pyquafu-0.4.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyquafu-0.4.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6fb5ca8b9b1820c62927348ac1d38afb2199876f76a535a2dfaf6140689f9bf1
MD5 0e2f3f490a05b178c33a720229c0fd07
BLAKE2b-256 980e72f9724d4b74f09bd01d325f90e92603c70ecf96e76ced372825139049f4

See more details on using hashes here.

File details

Details for the file pyquafu-0.4.2-cp38-cp38-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for pyquafu-0.4.2-cp38-cp38-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 8c4f9b71fc5de20270a40314e061af0a9f27827dd569afa86c8d02c7b28ae77d
MD5 cdff1d9c19cf3d0472fad8d8de8af373
BLAKE2b-256 f59b71d8ced784528baf29ffdd41d78ceee696ead9100915e0fdf9ab7ad967a1

See more details on using hashes here.

File details

Details for the file pyquafu-0.4.2-cp38-cp38-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for pyquafu-0.4.2-cp38-cp38-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 da11b891a156e7e57c442f57b9ef01704720b00f44ab18a97a9a13e0f20d3588
MD5 4f4a1de184d3e75b10e9b52e0e330dc4
BLAKE2b-256 f7b1fe24fe46fdb57ed4949a0c97642104f4255f0a52d82dabed7b210cc1a37a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page