Skip to main content

PyQUBO allows you to create QUBOs or Ising models from mathematical expressions with support for Python 3.12

Project description

https://img.shields.io/pypi/v/pyqubo.svg https://codecov.io/gh/recruit-communications/pyqubo/branch/master/graph/badge.svg https://readthedocs.org/projects/pyqubo/badge/?version=latest https://pepy.tech/badge/pyqubo https://github.com/MXNXV-ERR/pyqubo/actions/workflows/build_and_upload.yaml/badge.svg

PyQUBO

PyQUBO allows you to create QUBOs or Ising models from flexible mathematical expressions easily. Some of the features of PyQUBO are

  • Python based (C++ backend).

  • Fully integrated with Ocean SDK. (details)

  • Automatic validation of constraints. (details)

  • Placeholder for parameter tuning. (details)

For more details, see PyQUBO Documentation.

Example Usage

Creating QUBO

This example constructs a simple expression and compile it to model. By calling model.to_qubo(), we get the resulting QUBO. (This example solves Number Partitioning Problem with a set S = {4, 2, 7, 1})

>>> from pyqubo import Spin
>>> s1, s2, s3, s4 = Spin("s1"), Spin("s2"), Spin("s3"), Spin("s4")
>>> H = (4*s1 + 2*s2 + 7*s3 + s4)**2
>>> model = H.compile()
>>> qubo, offset = model.to_qubo()
>>> pprint(qubo) # doctest: +SKIP
{('s1', 's1'): -160.0,
('s1', 's2'): 64.0,
('s1', 's3'): 224.0,
('s1', 's4'): 32.0,
('s2', 's2'): -96.0,
('s2', 's3'): 112.0,
('s2', 's4'): 16.0,
('s3', 's3'): -196.0,
('s3', 's4'): 56.0,
('s4', 's4'): -52.0}

Integration with D-Wave Ocean

PyQUBO can output the BinaryQuadraticModel(BQM) which is compatible with Sampler class defined in D-Wave Ocean SDK. In the example below, we solve the problem with SimulatedAnnealingSampler.

>>> import neal
>>> sampler = neal.SimulatedAnnealingSampler()
>>> bqm = model.to_bqm()
>>> sampleset = sampler.sample(bqm, num_reads=10)
>>> decoded_samples = model.decode_sampleset(sampleset)
>>> best_sample = min(decoded_samples, key=lambda x: x.energy)
>>> best_sample.sample # doctest: +SKIP
{'s1': 0, 's2': 0, 's3': 1, 's4': 0}

If you want to solve the problem by actual D-Wave machines, just replace the sampler by a DWaveCliqueSampler instance, for example.

For more examples, see example notebooks.

Benchmarking

Since the core logic of the new PyQUBO (>=1.0.0) is written in C++ and the logic itself is also optimized, the execution time to produce QUBO has become shorter. We benchmarked the execution time to produce QUBOs of TSP with the new PyQUBO (1.0.0) and the previous PyQUBO (0.4.0). The result shows the new PyQUBO runs 1000 times faster as the problem size increases.

https://raw.githubusercontent.com/recruit-communications/pyqubo/master/images/benchmark.svg

Execution time includes building Hamiltonian, compilation, and producing QUBOs. The code to produce the above result is found in here.

Installation

pip install pyqubo

or

python -m pip install .

Supported Python Versions

Python 3.6, 3.7, 3.8, 3.9 and 3.10 are supported.

Supported Operating Systems

  • Linux (32/64bit)

  • OSX (x86_64(Intel)/arm64(Apple Silicon), 64bit, >=10.9)

  • Win (64bit)

Test

Run all tests.

export USE_TEST=1
python -m unittest discover test

Show coverage report.

export USE_TEST=1
coverage run -m unittest discover
coverage html

Run test with circleci CLI.

circleci build --job $JOBNAME

Run doctest.

make doctest

Dependency

This repository contains the source code of cimod which is licensed under the Apache License 2.0. cimod is the C++ header-only library for a binary quadratic model, developed by OpenJij.

Citation

If you use PyQUBO in your research, please cite the following papers ([M. Zaman, et al., 2021], [K. Tanahashi, et al., 2019]).

@article{zaman2021pyqubo,
    title={PyQUBO: Python Library for QUBO Creation},
    author={Zaman, Mashiyat and Tanahashi, Kotaro and Tanaka, Shu},
    journal={IEEE Transactions on Computers},
    year={2021},
    publisher={IEEE}
}

@article{tanahashi2019application,
  title={Application of Ising Machines and a Software Development for Ising Machines},
  author={Tanahashi, Kotaro and Takayanagi, Shinichi and Motohashi, Tomomitsu and Tanaka, Shu},
  journal={Journal of the Physical Society of Japan},
  volume={88},
  number={6},
  pages={061010},
  year={2019},
  publisher={The Physical Society of Japan}
}

Organization

Recruit Communications Co., Ltd.

Licence

Released under the Apache License 2.0.

Contribution

We welcome contributions to this project. See CONTRIBUTING.

We thank all contributors, especially @tail-island and @29rou.

I am jus using the pyqubo code and adding support for Python 3.12 , with test and github actions for the same , hae changes the contacts to mine but source belongs to Recruit Co., Ltd. and is available at [https://github.com/recruit-communications/pyqubo]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyqubo2-1.4.0.tar.gz (44.3 kB view details)

Uploaded Source

Built Distributions

pyqubo2-1.4.0-cp312-cp312-win_amd64.whl (405.1 kB view details)

Uploaded CPython 3.12 Windows x86-64

pyqubo2-1.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (245.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pyqubo2-1.4.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (261.3 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

pyqubo2-1.4.0-cp312-cp312-macosx_11_0_arm64.whl (204.2 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pyqubo2-1.4.0-cp312-cp312-macosx_10_9_x86_64.whl (229.7 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pyqubo2-1.4.0-cp311-cp311-win_amd64.whl (405.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

pyqubo2-1.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (245.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyqubo2-1.4.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (260.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

pyqubo2-1.4.0-cp311-cp311-macosx_11_0_arm64.whl (201.9 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyqubo2-1.4.0-cp311-cp311-macosx_10_9_x86_64.whl (225.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyqubo2-1.4.0-cp310-cp310-win_amd64.whl (405.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

pyqubo2-1.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (245.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyqubo2-1.4.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (260.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

pyqubo2-1.4.0-cp310-cp310-macosx_11_0_arm64.whl (201.9 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyqubo2-1.4.0-cp310-cp310-macosx_10_9_x86_64.whl (225.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyqubo2-1.4.0-cp39-cp39-win_amd64.whl (404.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyqubo2-1.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (245.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyqubo2-1.4.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (259.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

pyqubo2-1.4.0-cp39-cp39-macosx_11_0_arm64.whl (201.9 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyqubo2-1.4.0-cp39-cp39-macosx_10_9_x86_64.whl (225.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyqubo2-1.4.0-cp38-cp38-win_amd64.whl (426.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

pyqubo2-1.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (244.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyqubo2-1.4.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (259.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

pyqubo2-1.4.0-cp38-cp38-macosx_11_0_arm64.whl (201.8 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyqubo2-1.4.0-cp38-cp38-macosx_10_9_x86_64.whl (225.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyqubo2-1.4.0-cp37-cp37m-win_amd64.whl (427.0 kB view details)

Uploaded CPython 3.7m Windows x86-64

pyqubo2-1.4.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (251.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyqubo2-1.4.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (265.8 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

pyqubo2-1.4.0-cp37-cp37m-macosx_10_9_x86_64.whl (223.9 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pyqubo2-1.4.0-cp36-cp36m-win_amd64.whl (568.6 kB view details)

Uploaded CPython 3.6m Windows x86-64

pyqubo2-1.4.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (251.7 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pyqubo2-1.4.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (265.6 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

pyqubo2-1.4.0-cp36-cp36m-macosx_10_9_x86_64.whl (223.9 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file pyqubo2-1.4.0.tar.gz.

File metadata

  • Download URL: pyqubo2-1.4.0.tar.gz
  • Upload date:
  • Size: 44.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pyqubo2-1.4.0.tar.gz
Algorithm Hash digest
SHA256 a8e0d4de3ac6d569c140b0c64d32b8c1eba5f8a02722f2e4c75e1edd4d128846
MD5 589e73c0beb5736ce8687c2fc3f4bd43
BLAKE2b-256 881a9eb02e04cdfec597f77a6c139e571a0b79d26f08051d945e8affceb66fd3

See more details on using hashes here.

File details

Details for the file pyqubo2-1.4.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pyqubo2-1.4.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 405.1 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pyqubo2-1.4.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 55614bf86c22e6f4fb46ea4daca4066dcf9cab0ac8002aa82fd08708c9dcbc32
MD5 88045f41e3ddaeede619b848c309535c
BLAKE2b-256 637be15a1f04b34be80b38c971de05f6eed68cbcad023fb49c7c9c4737a39cca

See more details on using hashes here.

File details

Details for the file pyqubo2-1.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyqubo2-1.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d984ef21ebb97987c3e4b3ac8a7f7d790b4287932e10ff574591df9122032242
MD5 340be81add865fc1f5b99e1b5273e032
BLAKE2b-256 6b0bee4019b253f9e850e5121be3e961a6eda15ed47f6a95fe7a89bc3227aa48

See more details on using hashes here.

File details

Details for the file pyqubo2-1.4.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyqubo2-1.4.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 49c33c56e256ca3c9a60e2a0964ed12c81dffb9401dad3663c8749718883a369
MD5 c8bfbff1d3afe1b58960a076b9e0df0b
BLAKE2b-256 464502cff96623b90e35b65bbba59f92e7cad88bac4f4331be62b2a91513c98e

See more details on using hashes here.

File details

Details for the file pyqubo2-1.4.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyqubo2-1.4.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f69fcd747fea07068f277d4669c64a195c0e21b236641124b1cb211b2cde6c82
MD5 38007450c1b7a532113b405d6ad3f97b
BLAKE2b-256 ee947dbac1c2fd58ac3a9b2b0cd9c3d23b36ddb9d2175ac0875d27371f3b2299

See more details on using hashes here.

File details

Details for the file pyqubo2-1.4.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyqubo2-1.4.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1d09bab8becdd929a11eb2931430ad88af41a69d9a00231ce5b8ce21515dface
MD5 747e94b0c05d256f3e098253a5757298
BLAKE2b-256 2f1d55a5e5a70386e4e9e559eeb0a94201d5c8bc3b57d4dc18b90a69dd9d0ffe

See more details on using hashes here.

File details

Details for the file pyqubo2-1.4.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyqubo2-1.4.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 405.4 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pyqubo2-1.4.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2c2a54977072c409556c2b057b00afe838e44c186b53e8287ad197e7c7027fb3
MD5 5d25ff245087227c073af39b3c5ad0ec
BLAKE2b-256 4617919078e9136fb61c8f0380fa4c93c3dde6d07a93aca88b4e44b7746ca803

See more details on using hashes here.

File details

Details for the file pyqubo2-1.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyqubo2-1.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d80486db627c44ed295eb5b9ba30e5e99c2788e6885e4343d068442017681e7e
MD5 25984a5f701c01856af626a9625ecb5f
BLAKE2b-256 7aab0dd453446e1401e500ec2698eaf53aa57a504f7b99fc1296f43d2c0fabab

See more details on using hashes here.

File details

Details for the file pyqubo2-1.4.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyqubo2-1.4.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 788b309ab2716b0b7591c392ba619188bae249b381604413c4c6127bbdf77006
MD5 8c869b11a3b76b5b9d0915d376d0c73b
BLAKE2b-256 ce86dda9ccb5189665010fbe5861447dddcef429c7bfac52296def58c11adf5a

See more details on using hashes here.

File details

Details for the file pyqubo2-1.4.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyqubo2-1.4.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 601b228ceb31fba66e96fc89c28aa248602c86cfd66723be07d02216d7c7caa5
MD5 04db153dc5bd4701acbf853cc9df490d
BLAKE2b-256 c810dc02af3e9bb108a2acd366acea2408848e598cd255609a29bc769e65f87f

See more details on using hashes here.

File details

Details for the file pyqubo2-1.4.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyqubo2-1.4.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 09d36d1c68ac060b1bda69ab44eb62e164eb3ac86d05dbdef101bac404e6c310
MD5 56a201621e80eed41f5c59383dc34e6d
BLAKE2b-256 95d888222422db22d545053f1ac56089f8a0b9380e2f8389f850a8fca02a057b

See more details on using hashes here.

File details

Details for the file pyqubo2-1.4.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyqubo2-1.4.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 405.3 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pyqubo2-1.4.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d78073cbb7c307fc7c8cc33df7a0999538b146deee2166e481626d2ca1cc7c66
MD5 5e403840414f7ccae9deaa3f6244fb33
BLAKE2b-256 1bd2fe4ead6ea826262cf765b30cd95d9e067c80669e088f7e898f52db057455

See more details on using hashes here.

File details

Details for the file pyqubo2-1.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyqubo2-1.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 30ba774e72b2e1e6b7105861c293c4a56f6f7f59509ed5dbe9fafbd349346105
MD5 01616e439c123b1d45cbea7946c92397
BLAKE2b-256 0ea7dec50ab0e312979873af2b004d877f1afae64a12f2b5d63bedc473a86048

See more details on using hashes here.

File details

Details for the file pyqubo2-1.4.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyqubo2-1.4.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 54a2c8f2b683e7c281d763e3052646d606e3e7a58018c7e60c59fa68ed162741
MD5 c984e2f6beec561d9169adf62dfdc53f
BLAKE2b-256 7d24ee042417c06140c6f69b788f9b1638944a211e73d76b512b3fc3fadca9d1

See more details on using hashes here.

File details

Details for the file pyqubo2-1.4.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyqubo2-1.4.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 937c06c859389ff56ca4b585027a0025ded3d48f04c1f2253ef40aa2ee7dcb52
MD5 3043b9ff91ef738fe1bd2ab3cece4a40
BLAKE2b-256 c165fbc8eb017458e267e501f8b9745129e3d493ef9b8c9613bb7932c30bb643

See more details on using hashes here.

File details

Details for the file pyqubo2-1.4.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyqubo2-1.4.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 014c22a4fcfa1dcedc1d99d092ea02cef45941afad6dcf7fcf3088aa7029c5eb
MD5 1ffc5da2053f2ae78b0c84bde260b34f
BLAKE2b-256 bd43f64b7ec890904d67b7c117cbca93352b066e32a0623143a5a99844e8621f

See more details on using hashes here.

File details

Details for the file pyqubo2-1.4.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyqubo2-1.4.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 404.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pyqubo2-1.4.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 eb5a837480f4274081d8d776e771beb0eb92b70a30da068bb4872f0d648b8d25
MD5 bbec2ec080c7b1ea0107f4769c65eeaf
BLAKE2b-256 f39bb971dddc79ce0f21c5c1439a4f9c3020a1ca9b6886cb932b859e0981be43

See more details on using hashes here.

File details

Details for the file pyqubo2-1.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyqubo2-1.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6a8e8516f30a3e36a89577d4e4c920859446e07aa87c9559fe19d459af1ce37b
MD5 6cfaefc84e59c0485ff404dff2e023ba
BLAKE2b-256 9ccdcf293476d151e365d6ebf06641ffe90759d914512ca999a9b81e478a53cb

See more details on using hashes here.

File details

Details for the file pyqubo2-1.4.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyqubo2-1.4.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 901632e97cb3190c1ebc918b2bcaff58d536a5e996adb8825119f5e614380fab
MD5 558a165064ddb3be1476fae40d21eef8
BLAKE2b-256 fb6446e47f5b9c61fd95888a624e575502dad27b0f10463941e1ab3f49174ff2

See more details on using hashes here.

File details

Details for the file pyqubo2-1.4.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyqubo2-1.4.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a624539f109346331e0269b9be2c2423cd629876b577fd8fdc0376c64a323a67
MD5 2c3ae6b1111929697ab0c20176076e73
BLAKE2b-256 5d8653264a239f8db1a72ae517e06e49a087a638c3e6c688832522ef80d7bb53

See more details on using hashes here.

File details

Details for the file pyqubo2-1.4.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyqubo2-1.4.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 766282cf5367bece05539516d808b2a1a84505ad031d84a7923ffa6ad1a76e93
MD5 7d326eaf4b5972da1285a3b32b3f18f5
BLAKE2b-256 d7a5e0881c195160c3020d451899c67a95d1271fbdb9e27a4f663de00f5be37c

See more details on using hashes here.

File details

Details for the file pyqubo2-1.4.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyqubo2-1.4.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 426.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pyqubo2-1.4.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1fe06eccdae9e448dd97b41ed1c0a0a73f5c1c8fac1c648fcb86548b6387a3c6
MD5 0c4edc507c005dcc589f88ec002ec401
BLAKE2b-256 adf5e00844d1a7577746997191428ca57cf48595caccf1dc4bb9a3a9430c7197

See more details on using hashes here.

File details

Details for the file pyqubo2-1.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyqubo2-1.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ff0be5d5e98e4401c23f41e50e00c6f936e7ba639b768da0afb21c8a2d1de6a0
MD5 19c81bcce5b769c6deaaaf40bdc2a68c
BLAKE2b-256 c3e001a3579610dc7ad0f4db551955113daa0d26bf986d552fa3fc288828c836

See more details on using hashes here.

File details

Details for the file pyqubo2-1.4.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyqubo2-1.4.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3c07b8210efaface9489157363c06ae5286e3edbb2d8a213ee9eec2a002ba250
MD5 bb6bdc0234c3ffc4486f5265d5b54a08
BLAKE2b-256 a49085c4029c4ee1d030b92e905fe06f7e5d146399fae963cfb203d2ec019e17

See more details on using hashes here.

File details

Details for the file pyqubo2-1.4.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyqubo2-1.4.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 458c77fc9cc3c4bbce521d5e8c2ef3325022484b1560bdccaef701a3ae150d38
MD5 ee10a684dfc5e923b41f8837f0e53ca7
BLAKE2b-256 fd801ba5b9c8ad1693cba2f445cb48c6150da4f2c0babf5a417f63c876937de3

See more details on using hashes here.

File details

Details for the file pyqubo2-1.4.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyqubo2-1.4.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fa093512e9160375abb9f4356a1cebaae1914fcab2a4b0fe6424477e908f6d59
MD5 bc100bcae0ba2c19c911a9e762ceaa8f
BLAKE2b-256 82e96a2212e700c8c844584e40d4459bea43229fc3af0c5900fe7c68787c7358

See more details on using hashes here.

File details

Details for the file pyqubo2-1.4.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyqubo2-1.4.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 427.0 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pyqubo2-1.4.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 1b840c9bc13f4f6350b9bb954bcc5fa9cc222b00e003a3765013a0ffd11ef086
MD5 d2f0441befe357ff23eddc17132a8fab
BLAKE2b-256 5c72793991506485733b3f8c23b5e8e7c804367233d89bb9e241366ede975b1e

See more details on using hashes here.

File details

Details for the file pyqubo2-1.4.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyqubo2-1.4.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b9e5d815db94f1aea2593eb8ba73f82000e5205f97ac4d601eea60aecdeab719
MD5 bc7c876c8b334bdc4e6a5dc6991baad3
BLAKE2b-256 a3c37d9ac86a0d468f22d77a7e636ba23e67392ffdd6fdd40da4bd17a481acc2

See more details on using hashes here.

File details

Details for the file pyqubo2-1.4.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyqubo2-1.4.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 83bc18c0a8db1db66234cc35180f8d509dc9d77fb0408e18562a846ba16f387a
MD5 7fa4f2b3abf52f3465bac762c575ba7d
BLAKE2b-256 a91eb5400b2422034ccb3a130bb59ea78afab0fbf667fd4012d97b7fceb5aa6d

See more details on using hashes here.

File details

Details for the file pyqubo2-1.4.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyqubo2-1.4.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c6f7be299a1762cccb32bc0ca14bfbc2907b5eaab733577f408e55f7c2972347
MD5 423d0f31ae1c170aa293f107aabb4b87
BLAKE2b-256 4c992c2490eba981c66d6d92a4ba1ff30f692f011aec483099a2cd97f0a98ae3

See more details on using hashes here.

File details

Details for the file pyqubo2-1.4.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pyqubo2-1.4.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 568.6 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pyqubo2-1.4.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 0bca1acec694dadd22db0cd3bbd9c674eaf4408817d9959bcfc68b79a23a1f18
MD5 94c28d4ea6d257256c05e2cc98505ff6
BLAKE2b-256 340f48fb635a964f0c735d5f6eb6b7115c651b3f1a9127944ac964b92deeb408

See more details on using hashes here.

File details

Details for the file pyqubo2-1.4.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyqubo2-1.4.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c5da0ab6ad50419f5bc57912ef4467309a2e1a20a9261d8badd69016c1e51f06
MD5 15d71a6bf70e779c52dee79997029a80
BLAKE2b-256 33fdbdfe29edc6d3e501fa5c546cf6ff2b5f5e92d1b7e70622f9ecaa8dec2462

See more details on using hashes here.

File details

Details for the file pyqubo2-1.4.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyqubo2-1.4.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 811dc939795258851c25f78de2bc34321a1068a822ad7cd77ad4b21ab89d1f71
MD5 fb5936585ff321263945a3a9c84f796e
BLAKE2b-256 f0b5aabe8a32e807d0ef78d07e99d1b79cec50ce1599bb291b0f216196022647

See more details on using hashes here.

File details

Details for the file pyqubo2-1.4.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyqubo2-1.4.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c5eabeef12b082c254a082edb607b38758a0d899c40b08294730eb4bb03b0332
MD5 45e638a5935cf490a0de1c91fa0ab871
BLAKE2b-256 331c265c60ebdee1c86d6ad93f383eaf21f405c004712c223bb69d97f285c7a8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page