Python-RADEX
Project description
A wrapper for RADEX (www.sron.rug.nl/~vdtak/radex/) in python.
As of v0.2, created October 26, 2013, this package includes both a python wrapper of the command-line program and a direct wrapper of the fortran code created with f2py.
Installation procedure for the f2py-wrapped version
You need to have gfortran and f2py on your path. If you’ve successfully built numpy from source, you should have both.
All you need to do is:
$ python setup.py install_radex install
This will call a procedure install_radex that downloads the latest version of RADEX from the radex homepage, patches the source, and builds a file radex.so, which is a python shared object that can be imported.
See the install page for more details.
If you want pyradex to look in a specific directory for the molecular data files, you can specify an environmental variable RADEX_DATAPATH prior to starting python. It can also be specified interactively with the datapath keyword.
Using the f2py-wrapped version
The direct wrapper of the fortran code uses a class Radex as its underlying structure. This class is useful for direct manipulation of RADEX inputs and direct access to its outputs.
Example:
import pyradex
import numpy as np
R = pyradex.Radex()
Tlvg = R(collider_densities={'oH2':900,'pH2':100}, column=1e16, species='co',method='lvg')
Tslab = R(collider_densities={'oH2':900,'pH2':100}, column=1e16, species='co',method='slab')
Tsphere = R(collider_densities={'oH2':900,'pH2':100}, column=1e16, species='co',method='sphere')
Tlvg[:3].pprint()
Tslab[:3].pprint()
Tsphere[:3].pprint()
Result:
Tex tau frequency upperstateenergy upperlevel lowerlevel upperlevelpop lowerlevelpop flux ------------- -------------- ----------- ---------------- ---------- ---------- ---------------- --------------- ----------------- 15.2747101724 0.937692338925 115.2712018 5.53 2 1 0.273140336953 0.453621905471 2.93964536078e-14 10.8673211326 2.74275175782 230.538 16.6 3 2 0.0518618367484 0.273140336953 9.26125039465e-14 8.30670325364 2.01021823976 345.7959899 33.19 4 3 0.00379591658449 0.0518618367484 8.16324298598e-14 Tex tau frequency upperstateenergy upperlevel lowerlevel upperlevelpop lowerlevelpop flux ------------- -------------- ----------- ---------------- ---------- ---------- ---------------- -------------- ----------------- 17.8076937528 0.681341951256 115.2712018 5.53 2 1 0.312979158313 0.394862780876 2.89304678735e-14 14.8865118666 1.96024230849 230.538 16.6 3 2 0.102821702575 0.312979158313 1.38012283784e-13 11.448407058 2.03949857132 345.7959899 33.19 4 3 0.00920322307626 0.102821702575 1.6139902821e-13 Tex tau frequency upperstateenergy upperlevel lowerlevel upperlevelpop lowerlevelpop flux ------------- ------------- ----------- ---------------- ---------- ---------- ---------------- -------------- ----------------- 14.38256087 1.06765591906 115.2712018 5.53 2 1 0.243400727834 0.480559204909 2.93394133644e-14 9.28920337666 3.1666639484 230.538 16.6 3 2 0.037299201561 0.243400727834 7.24810556601e-14 7.50189023571 1.84556901411 345.7959899 33.19 4 3 0.00307839203073 0.037299201561 6.19215196139e-14
Note that because of how RADEX was written, i.e. with common blocks, the values stored in each of these objects is identical! You cannot have two independent copies of the RADEX class ever.
Recommended installation procedure for the command-line version
make radex as normal, but create two executables: radex_sphere, radex_lvg, and radex_slab by building with one of these three lines commented out each time:
c parameter (method = 1) ! uniform sphere parameter (method = 2) ! expanding sphere (LVG) c parameter (method = 3) ! plane parallel slab (shock)
Copy these to your system path
python setup.py install to install pyradex
Simple example
Using some trivial defaults:
In [1]: import pyradex In [2]: T = pyradex.radex(collider_densities={'H2':1000}) WARNING: Assumed thermal o/p ratio since only H2 was given but collider file has o- and p- H2 [pyradex.core] In [3]: T.pprint(show_units=True) J_up J_low E_UP FREQ WAVE T_EX TAU T_R POP_UP POP_LOW FLUX_Kkms FLUX_Inu K GHz um K K K km / s erg / (cm2 s) ---- ----- ---- -------- --------- ----- --------- ------- ------ ------- --------- ------------- 1 0 5.5 115.2712 2600.7576 5.044 0.0004447 0.00086 0.4709 0.47 0.0009155 1.806e-11 In [4]: T.meta Out[4]: {'Column density [cm-2]': '1.000E+12', 'Density of H2 [cm-3]': '1.000E+03', 'Density of oH2 [cm-3]': '3.509E-04', 'Density of pH2 [cm-3]': '1.000E+03', 'Geometry': 'Uniform sphere', 'Line width [km/s]': '1.000', 'Molecular data file': '/Users/adam/repos/Radex/data/co.dat', 'Radex version': '20nov08', 'T(background) [K]': '2.730', 'T(kin) [K]': '10.000'}
Timing information
i.e., how fast is it?:
%timeit T = pyradex.radex(collider_densities={'H2':1000}) 1 loops, best of 3: 149 ms per loop for n in 10**np.arange(6): %timeit T = pyradex.radex(collider_densities={'H2':n}) 10 loops, best of 3: 149 ms per loop 10 loops, best of 3: 150 ms per loop 10 loops, best of 3: 149 ms per loop 10 loops, best of 3: 151 ms per loop 10 loops, best of 3: 150 ms per loop 10 loops, best of 3: 149 ms per loop for n in 10**np.arange(12,18): ....: %timeit T = pyradex.radex(collider_densities={'H2':1000}, column_density=n) 10 loops, best of 3: 149 ms per loop 10 loops, best of 3: 149 ms per loop 10 loops, best of 3: 149 ms per loop 10 loops, best of 3: 150 ms per loop 10 loops, best of 3: 152 ms per loop 10 loops, best of 3: 157 ms per loop
These results indicate that, even in highly optically thick cases where more iterations are required, the execution time is dominated by the python overheads.
If you redo these tests comparing the fortran wrapper to the “naive” version, the difference is enormous. The following tests can be seen in timing.py:
Python: 0.892609834671 Fortran: 0.0151958465576 py/fortran: 58.7403822016 Python: 0.902825832367 Fortran: 0.0102920532227 py/fortran: 87.7206727205 Python: 0.876524925232 Fortran: 0.0730140209198 py/fortran: 12.0048850096 Python: 0.836034059525 Fortran: 0.0925290584564 py/fortran: 9.03536762906 Python: 0.880390882492 Fortran: 0.0725519657135 py/fortran: 12.1346248008 Python: 0.96048283577 Fortran: 0.0753719806671 py/fortran: 12.7432346512
Making Grids
Is more efficient with scripts, but you can still do it…
for n in 10**np.arange(12,18): T = pyradex.radex(collider_densities={'H2':1000}, column_density=n) T.pprint() Row# Line# E_UP FREQ WAVE T_EX TAU T_R POP_UP POP_LOW FLUX_Kkms FLUX_Inu ---- ----- ---- -------- --------- ----- --------- ------- ------ ------- --------- --------- 1 0 5.5 115.2712 2600.7576 5.044 0.0004447 0.00086 0.4709 0.47 0.0009155 1.806e-11 Row# Line# E_UP FREQ WAVE T_EX TAU T_R POP_UP POP_LOW FLUX_Kkms FLUX_Inu ---- ----- ---- -------- --------- ----- -------- -------- ------ ------- --------- --------- 1 0 5.5 115.2712 2600.7576 5.047 0.004444 0.008589 0.471 0.4698 0.009143 1.803e-10 Row# Line# E_UP FREQ WAVE T_EX TAU T_R POP_UP POP_LOW FLUX_Kkms FLUX_Inu ---- ----- ---- -------- --------- ----- ------- ------- ------ ------- --------- --------- 1 0 5.5 115.2712 2600.7576 5.075 0.04415 0.08473 0.4721 0.4681 0.0902 1.779e-09 Row# Line# E_UP FREQ WAVE T_EX TAU T_R POP_UP POP_LOW FLUX_Kkms FLUX_Inu ---- ----- ---- -------- --------- ----- ------ ------ ------ ------- --------- --------- 1 0 5.5 115.2712 2600.7576 5.336 0.4152 0.7475 0.4817 0.4527 0.7957 1.569e-08 Row# Line# E_UP FREQ WAVE T_EX TAU T_R POP_UP POP_LOW FLUX_Kkms FLUX_Inu ---- ----- ---- -------- --------- ----- ----- ---- ------ ------- --------- --------- 1 0 5.5 115.2712 2600.7576 6.929 2.927 3.49 0.5057 0.3745 3.715 7.327e-08 Row# Line# E_UP FREQ WAVE T_EX TAU T_R POP_UP POP_LOW FLUX_Kkms FLUX_Inu ---- ----- ---- -------- --------- ----- ----- ---- ------ ------- --------- --------- 1 0 5.5 115.2712 2600.7576 9.294 18.09 5.96 0.4696 0.2839 6.345 1.252e-07
If you want to create a grid with the directly wrapped version, do loops with constant temperature: every time you load a new temperature, RADEX must read in the molecular data file and interpolate across the collision rate values, which may be a substantial overhead.
If you want to build a grid, do not make an astropy table each time! That appears to dominate the overhead at each iteration.
A note on self-consistency in LVG calculations
LVG computations have weird units. The opacity of a line only depends on the velocity-coherent column along the line of sight, i.e. the column per km/s.
The key assumption in the LVG Sobolev approximation is that each “cell” can be treated independently such that there are no nonlocal radiative effects.
This independence implies that there is a separation between the local volume density and the total line-of-sight column density.
However, the quantities reported by typical codes - RADEX, DESPOTIC - are integrated line-of-sight values. The column density, abundance, and local volume density are not independent, then.
In order to have a self-consistent cloud (or line of sight), you must assume some length scale. Usually, one specifies a velocity gradient per length scale rather than an absolute length scale, but the length scale is important.
If a total column density of hydrogen N(H) is specified along with a density n(H), the length scale is trivial: N(H)/n(H) = L. If you increase the density, this length scale decreases - so far all is fine.
Within RADEX, the standard free variable is the column of the molecule of interest. If you change the column of the molecule, which is possible to do explicitly, and hold everything else fixed in RADEX (n(H), dV), the change can be interpreted as a change in the size scale or the column.
One could consider the alternative possibility of treating the length scale as a free parameter, but this approach contains a danger of changing the interpretation of the processes involved: if the length scale is decreased for a fixed delta-V, the velocity gradient dv/dl must be larger. This interpretation should be avoided as it bears the risk of breaking the LVG assumption. The velocity gradient is also often an imposed constraint via the observed linewidth, while the length scale is only weakly constrained in most situations.
In DESPOTIC, the free variables are the total column density, the density, the abundance, and the velocity gradient. Length is therefore left as the dependent variable, consistent with the above.
The Classes (Despotic & Radex) are constructed such that length is a dependent variables and all the others can be changed. Since abundance is not an explicit input into RADEX, this is done with some property machinery behind the scenes.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file pyradex-0.2.2.tar.gz
.
File metadata
- Download URL: pyradex-0.2.2.tar.gz
- Upload date:
- Size: 111.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 64369521e6672f6ed9db170040e336db74fa3dc7cb5c871b3efcdddb4f2d2e15 |
|
MD5 | 92aa5ca8c5d1a305136784591b8aec7a |
|
BLAKE2b-256 | bed15ec9765ea27f823cecd142af20c99af6501071faf6fbc9bbb15303309e7b |