Skip to main content

State of the Art Neural Networks for Generative Deep Learning

Project description

pyradox-generative

State of the Art Neural Networks for Generative Deep Learning

Downloads Downloads Downloads


Table of Contents


Installation

pip install pyradox-generative

Usage

This library provides light weight trainers for the following generative models:

Vanilla GAN

Just provide your genrator and discriminator and train your GAN

Data Preparation:

from pyradox_generative import GAN
import numpy as np
import tensorflow as tf
import tensorflow.keras as keras

(x_train, y_train), _ = keras.datasets.mnist.load_data()
x_train = x_train.astype(np.float32) / 255
x_train = x_train.reshape(-1, 28, 28, 1) * 2.0 - 1.0

dataset = tf.data.Dataset.from_tensor_slices(x_train)
dataset = dataset.shuffle(1024)
dataset = dataset.batch(32, drop_remainder=True).prefetch(1)

Define the generator and discriminator models:

generator = keras.models.Sequential(
    [
        keras.Input(shape=[28]),
        keras.layers.Dense(7 * 7 * 3),
        keras.layers.Reshape([7, 7, 3]),
        keras.layers.BatchNormalization(),
        keras.layers.Conv2DTranspose(
            32, kernel_size=3, strides=2, padding="same", activation="selu"
        ),
        keras.layers.Conv2DTranspose(
            1, kernel_size=3, strides=2, padding="same", activation="tanh"
        ),
    ],
    name="generator",
)

discriminator = keras.models.Sequential(
    [
        keras.layers.Conv2D(
            32,
            kernel_size=3,
            strides=2,
            padding="same",
            activation=keras.layers.LeakyReLU(0.2),
            input_shape=[28, 28, 1],
        ),
        keras.layers.Conv2D(
            3,
            kernel_size=3,
            strides=2,
            padding="same",
            activation=keras.layers.LeakyReLU(0.2),
        ),
        keras.layers.Flatten(),
        keras.layers.Dense(1, activation="sigmoid"),
    ],
    name="discriminator",
)

Plug in the models to the trainer class and train them using the very familiar compile and fit methods:

gan = GAN(discriminator=discriminator, generator=generator, latent_dim=28)
gan.compile(
    d_optimizer=keras.optimizers.Adam(learning_rate=0.0001),
    g_optimizer=keras.optimizers.Adam(learning_rate=0.0001),
    loss_fn=keras.losses.BinaryCrossentropy(),
)

history = gan.fit(dataset)

Conditional GAN

Just provide your genrator and discriminator and train your GAN

Data Preparation and calculate the input and output dimensions of generator and discriminator:

from pyradox_generative import ConditionalGAN
import numpy as np
import tensorflow as tf
import tensorflow.keras as keras

CODINGS_SIZE = 28
N_CHANNELS = 1
N_CLASSES = 10
G_INP_CHANNELS = CODINGS_SIZE + N_CLASSES
D_INP_CHANNELS = N_CHANNELS + N_CLASSES

(x_train, y_train), _ = keras.datasets.mnist.load_data()
x_train = x_train
x_train = x_train.astype(np.float32) / 255
x_train = x_train.reshape(-1, 28, 28, 1) * 2.0 - 1.0
y_train = y_train
y_train = keras.utils.to_categorical(y_train, 10)

dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
dataset = dataset.shuffle(1024)
dataset = dataset.batch(32, drop_remainder=True).prefetch(1)

Define the generator and discriminator models:

generator = keras.models.Sequential(
    [
        keras.Input(shape=[G_INP_CHANNELS]),
        keras.layers.Dense(7 * 7 * 3),
        keras.layers.Reshape([7, 7, 3]),
        keras.layers.BatchNormalization(),
        keras.layers.Conv2DTranspose(
            32, kernel_size=3, strides=2, padding="same", activation="selu"
        ),
        keras.layers.Conv2DTranspose(
            1, kernel_size=3, strides=2, padding="same", activation="tanh"
        ),
    ],
    name="generator",
)

discriminator = keras.models.Sequential(
    [
        keras.layers.Conv2D(
            32,
            kernel_size=3,
            strides=2,
            padding="same",
            activation=keras.layers.LeakyReLU(0.2),
            input_shape=[28, 28, D_INP_CHANNELS],
        ),
        keras.layers.Conv2D(
            3,
            kernel_size=3,
            strides=2,
            padding="same",
            activation=keras.layers.LeakyReLU(0.2),
        ),
        keras.layers.Flatten(),
        keras.layers.Dense(1, activation="sigmoid"),
    ],
    name="discriminator",
)

Plug in the models to the trainer class and train them using the very familiar compile and fit methods:

gan = ConditionalGAN(
    discriminator=discriminator, generator=generator, latent_dim=CODINGS_SIZE
)
gan.compile(
    d_optimizer=keras.optimizers.Adam(learning_rate=0.0001),
    g_optimizer=keras.optimizers.Adam(learning_rate=0.0001),
    loss_fn=keras.losses.BinaryCrossentropy(),
)

history = gan.fit(dataset)

Wasserstein GAN

Just provide your genrator and discriminator and train your GAN

Data Preparation:

from pyradox_generative import WGANGP
import numpy as np
import tensorflow as tf
import tensorflow.keras as keras

(x_train, y_train), _ = keras.datasets.mnist.load_data()
x_train = x_train.astype(np.float32) / 255
x_train = x_train.reshape(-1, 28, 28, 1) * 2.0 - 1.0

dataset = tf.data.Dataset.from_tensor_slices(x_train)
dataset = dataset.shuffle(1024)
dataset = dataset.batch(32, drop_remainder=True).prefetch(1)

Define the generator and discriminator models:

generator = keras.models.Sequential(
    [
        keras.Input(shape=[28]),
        keras.layers.Dense(7 * 7 * 3),
        keras.layers.Reshape([7, 7, 3]),
        keras.layers.BatchNormalization(),
        keras.layers.Conv2DTranspose(
            32, kernel_size=3, strides=2, padding="same", activation="selu"
        ),
        keras.layers.Conv2DTranspose(
            1, kernel_size=3, strides=2, padding="same", activation="tanh"
        ),
    ],
    name="generator",
)

discriminator = keras.models.Sequential(
    [
        keras.layers.Conv2D(
            32,
            kernel_size=3,
            strides=2,
            padding="same",
            activation=keras.layers.LeakyReLU(0.2),
            input_shape=[28, 28, 1],
        ),
        keras.layers.Conv2D(
            3,
            kernel_size=3,
            strides=2,
            padding="same",
            activation=keras.layers.LeakyReLU(0.2),
        ),
        keras.layers.Flatten(),
        keras.layers.Dense(1, activation="sigmoid"),
    ],
    name="discriminator",
)

Plug in the models to the trainer class and train them using the very familiar compile and fit methods:

gan = WGANGP(
    discriminator=discriminator,
    generator=generator,
    latent_dim=28,
    discriminator_extra_steps=1,
    gp_weight=10,
)
gan.compile(
    d_optimizer=keras.optimizers.Adam(learning_rate=0.0001),
    g_optimizer=keras.optimizers.Adam(learning_rate=0.0001),
)

history = gan.fit(dataset)

Variational Auto Encoder

Just provide your encoder and decoder and train your VAE Sampling is done internally

Data Preparation:

from pyradox_generative import VAE
import numpy as np
import tensorflow as tf
import tensorflow.keras as keras

(x_train, y_train), _ = keras.datasets.mnist.load_data()
x_train = x_train.astype(np.float32) / 255
x_train = x_train.reshape(-1, 28, 28, 1) * 2.0 - 1.0

dataset = tf.data.Dataset.from_tensor_slices(x_train)
dataset = dataset.shuffle(1024)
dataset = dataset.batch(32, drop_remainder=True).prefetch(1)

Define the encoder and decoder models:

encoder = keras.models.Sequential(
    [
        keras.Input(shape=(28, 28, 1)),
        keras.layers.Conv2D(32, 3, activation="relu", strides=2, padding="same"),
        keras.layers.Conv2D(64, 3, activation="relu", strides=2, padding="same"),
        keras.layers.Flatten(),
        keras.layers.Dense(16, activation="relu"),
    ],
    name="encoder",
)

decoder = keras.models.Sequential(
    [
        keras.Input(shape=(28,)),
        keras.layers.Dense(7 * 7 * 64, activation="relu"),
        keras.layers.Reshape((7, 7, 64)),
        keras.layers.Conv2DTranspose(64, 3, activation="relu", strides=2, padding="same"),
        keras.layers.Conv2DTranspose(32, 3, activation="relu", strides=2, padding="same"),
        keras.layers.Conv2DTranspose(1, 3, activation="sigmoid", padding="same"),
    ],
    name="decoder",
)

Plug in the models to the trainer class and train them using the very familiar compile and fit methods:

vae = VAE(encoder=encoder, decoder=decoder, latent_dim=28)
vae.compile(keras.optimizers.Adam(learning_rate=0.001))
history = vae.fit(dataset)

Style GAN

Just provide your genrator and discriminator models and train your GAN

Data Preparation:

from pyradox_generative import StyleGAN
import numpy as np
import tensorflow as tf
from functools import partial

def resize_image(res, image):
    # only donwsampling, so use nearest neighbor that is faster to run
    image = tf.image.resize(
        image, (res, res), method=tf.image.ResizeMethod.NEAREST_NEIGHBOR
    )
    image = tf.cast(image, tf.float32) / 127.5 - 1.0
    return image


def create_dataloader(res):
    (x_train, y_train), _ = tf.keras.datasets.mnist.load_data()
    x_train = x_train[:100, :, :]
    x_train = np.pad(x_train, [(0, 0), (2, 2), (2, 2)], mode="constant")
    x_train = tf.image.grayscale_to_rgb(tf.expand_dims(x_train, axis=3), name=None)
    x_train = tf.data.Dataset.from_tensor_slices(x_train)

    batch_size = 32
    dl = x_train.map(partial(resize_image, res), num_parallel_calls=tf.data.AUTOTUNE)
    dl = dl.shuffle(200).batch(batch_size, drop_remainder=True).prefetch(1).repeat()
    return dl

Define the model by providing number of filters for each each resolution (log 2):

gan = StyleGAN(
    target_res=32,
    start_res=4,
    filter_nums={0: 32, 1: 32, 2: 32, 3: 32, 4: 32, 5: 32},
)
opt_cfg = {"learning_rate": 1e-3, "beta_1": 0.0, "beta_2": 0.99, "epsilon": 1e-8}

start_res_log2 = 2
target_res_log2 = 5

Train the Style GAN:

for res_log2 in range(start_res_log2, target_res_log2 + 1):
    res = 2 ** res_log2
    for phase in ["TRANSITION", "STABLE"]:
        if res == 4 and phase == "TRANSITION":
            continue

        train_dl = create_dataloader(res)

        steps = 10

        gan.compile(
            d_optimizer=tf.keras.optimizers.Adam(**opt_cfg),
            g_optimizer=tf.keras.optimizers.Adam(**opt_cfg),
            loss_weights={"gradient_penalty": 10, "drift": 0.001},
            steps_per_epoch=steps,
            res=res,
            phase=phase,
            run_eagerly=False,
        )

        print(phase)
        history = gan.fit(train_dl, epochs=1, steps_per_epoch=steps)

Cycle GAN

Just provide your genrator and discriminator models and train your GAN

Data Preparation:

import tensorflow_datasets as tfds
import tensorflow as tf
from tensorflow import keras
from pyradox_generative import CycleGAN

tfds.disable_progress_bar()
autotune = tf.data.AUTOTUNE
orig_img_size = (286, 286)
input_img_size = (256, 256, 3)


def normalize_img(img):
    img = tf.cast(img, dtype=tf.float32)
    return (img / 127.5) - 1.0


def preprocess_train_image(img, label):
    img = tf.image.random_flip_left_right(img)
    img = tf.image.resize(img, [*orig_img_size])
    img = tf.image.random_crop(img, size=[*input_img_size])
    img = normalize_img(img)
    return img


def preprocess_test_image(img, label):
    img = tf.image.resize(img, [input_img_size[0], input_img_size[1]])
    img = normalize_img(img)
    return img

train_horses, _ = tfds.load(
    "cycle_gan/horse2zebra", with_info=True, as_supervised=True, split="trainA[:5%]"
)
train_zebras, _ = tfds.load(
    "cycle_gan/horse2zebra", with_info=True, as_supervised=True, split="trainB[:5%]"
)

buffer_size = 256
batch_size = 1

train_horses = (
    train_horses.map(preprocess_train_image, num_parallel_calls=autotune)
    .cache()
    .shuffle(buffer_size)
    .batch(batch_size)
)
train_zebras = (
    train_zebras.map(preprocess_train_image, num_parallel_calls=autotune)
    .cache()
    .shuffle(buffer_size)
    .batch(batch_size)
)

Define the generator and discriminator models:

def build_generator(name):
    return keras.models.Sequential(
        [
            keras.layers.Input(shape=input_img_size),
            keras.layers.Conv2D(32, 3, activation="relu", padding="same"),
            keras.layers.Conv2D(32, 3, activation="relu", padding="same"),
            keras.layers.Conv2D(3, 3, activation="tanh", padding="same"),
        ],
        name=name,
    )


def build_discriminator(name):
    return keras.models.Sequential(
        [
            keras.layers.Input(shape=input_img_size),
            keras.layers.Conv2D(32, 3, activation="relu", padding="same"),
            keras.layers.MaxPooling2D(pool_size=2, strides=2),
            keras.layers.Conv2D(32, 3, activation="relu", padding="same"),
            keras.layers.MaxPooling2D(pool_size=2, strides=2),
            keras.layers.Conv2D(32, 3, activation="relu", padding="same"),
            keras.layers.MaxPooling2D(pool_size=2, strides=2),
            keras.layers.Conv2D(1, 3, activation="relu", padding="same"),
        ],
        name=name,
    )

Plug in the models to the trainer class and train them using the very familiar compile and fit methods:

gan = CycleGAN(
    generator_g=build_generator("gen_G"),
    generator_f=build_generator("gen_F"),
    discriminator_x=build_discriminator("disc_X"),
    discriminator_y=build_discriminator("disc_Y"),
)

gan.compile(
    gen_g_optimizer=keras.optimizers.Adam(learning_rate=2e-4, beta_1=0.5),
    gen_f_optimizer=keras.optimizers.Adam(learning_rate=2e-4, beta_1=0.5),
    disc_x_optimizer=keras.optimizers.Adam(learning_rate=2e-4, beta_1=0.5),
    disc_y_optimizer=keras.optimizers.Adam(learning_rate=2e-4, beta_1=0.5),
)

history = gan.fit(
    tf.data.Dataset.zip((train_horses, train_zebras)),
)

References

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyradox-generative-1.0.2.tar.gz (15.7 kB view hashes)

Uploaded Source

Built Distribution

pyradox_generative-1.0.2-py3-none-any.whl (17.1 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page