Skip to main content

State of the Art Neural Networks for Deep Learning

Project description

pyradox

This python library helps you with implementing various state of the art neural networks in a totally customizable fashion using Tensorflow 2

Downloads Downloads Downloads


Installation

pip install pyradox

or

pip install git+https://github.com/Ritvik19/pyradox.git

Usage

Modules

Module Description Input Shape Output Shape Usage
Rescale A layer that rescales the input: x_out = (x_in -mu) / sigma Arbitrary Same shape as input check here
Convolution 2D Applies 2D Convolution followed by Batch Normalization (optional) and Dropout (optional) 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Densely Connected Densely Connected Layer followed by Batch Normalization (optional) and Dropout (optional) 2D tensor with shape (batch_size, input_dim) 2D tensor with shape (batch_size, n_units) check here
DenseNet Convolution Block A Convolution block for DenseNets 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
DenseNet Convolution Block A Convolution block for DenseNets 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
DenseNet Transition Block A Transition block for DenseNets 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Dense Skip Connection Implementation of a skip connection for densely connected layer 2D tensor with shape (batch_size, input_dim) 2D tensor with shape (batch_size, n_units) check here
VGG Module Implementation of VGG Modules with slight modifications, Applies multiple 2D Convolution followed by Batch Normalization (optional), Dropout (optional) and MaxPooling 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Inception Conv Implementation of 2D Convolution Layer for Inception Net, Convolution Layer followed by Batch Normalization, Activation and optional Dropout 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Inception Block Implementation on Inception Mixing Block 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Xception Block A customised implementation of Xception Block (Depthwise Separable Convolutions) 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Efficient Net Block Implementation of Efficient Net Block (Depthwise Separable Convolutions) 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Conv Skip Connection Implementation of Skip Connection for Convolution Layer 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res Net Block Customized Implementation of ResNet Block 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res Net V2 Block Customized Implementation of ResNetV2 Block 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res NeXt Block Customized Implementation of ResNeXt Block 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Inception Res Net Conv 2D Implementation of Convolution Layer for Inception Res Net: Convolution2d followed by Batch Norm 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Inception Res Net Block Implementation of Inception-ResNet block 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) block 8 Block 17 Block 35
NAS Net Separable Conv Block Adds 2 blocks of Separable Conv Batch Norm 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
NAS Net Adjust Block Adjusts the input previous path to match the shape of the input
NAS Net Normal A Cell Normal cell for NASNet-A
NAS Net Reduction A Cell Reduction cell for NASNet-A
Mobile Net Conv Block Adds an initial convolution layer with batch normalization and activation 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Mobile Net Depth Wise Conv Block Adds a depthwise convolution block. A depthwise convolution block consists of a depthwise conv, batch normalization, activation, pointwise convolution, batch normalization and activation 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Inverted Res Block Adds an Inverted ResNet block 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
SEBlock Adds a Squeeze Excite Block 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here

ConvNets

Module Description Input Shape Output Shape Usage
Generalized Dense Nets A generalization of Densely Connected Convolutional Networks (Dense Nets) 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Densely Connected Convolutional Network 121 A modified implementation of Densely Connected Convolutional Network 121 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Densely Connected Convolutional Network 169 A modified implementation of Densely Connected Convolutional Network 169 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Densely Connected Convolutional Network 201 A modified implementation of Densely Connected Convolutional Network 201 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Generalized VGG A generalization of VGG network 4D tensor with shape (batch_shape, rows, cols, channels) 4D or 2D tensor usage 1 usage 2
VGG 16 A modified implementation of VGG16 network 4D tensor with shape (batch_shape, rows, cols, channels) 2D tensor with shape (batch_shape, new_dim) usage 1 usage 2
VGG 19 A modified implementation of VGG19 network 4D tensor with shape (batch_shape, rows, cols, channels) 2D tensor with shape (batch_shape, new_dim) usage 1 usage 2
Inception V3 Customized Implementation of Inception Net 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Generalized Xception Generalized Implementation of XceptionNet (Depthwise Separable Convolutions) 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Xception Net A Customised Implementation of XceptionNet 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Efficient Net Generalized Implementation of Effiecient Net 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Efficient Net B0 Customized Implementation of Efficient Net B0 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Efficient Net B1 Customized Implementation of Efficient Net B1 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Efficient Net B2 Customized Implementation of Efficient Net B2 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Efficient Net B3 Customized Implementation of Efficient Net B3 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Efficient Net B4 Customized Implementation of Efficient Net B4 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Efficient Net B5 Customized Implementation of Efficient Net B5 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Efficient Net B6 Customized Implementation of Efficient Net B6 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Efficient Net B7 Customized Implementation of Efficient Net B7 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res Net Customized Implementation of Res Net 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res Net 50 Customized Implementation of Res Net 50 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res Net 101 Customized Implementation of Res Net 101 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res Net 152 Customized Implementation of Res Net 152 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res Net V2 Customized Implementation of Res Net V2 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res Net 50 V2 Customized Implementation of Res Net 50 V2 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res Net 101 V2 Customized Implementation of Res Net 101 V2 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res Net 152 V2 Customized Implementation of Res Net 152 V2 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res NeXt Customized Implementation of Res NeXt 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res NeXt 50 Customized Implementation of Res NeXt 50 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res NeXt 101 Customized Implementation of Res NeXt 101 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res NeXt 152 Customized Implementation of Res NeXt 152 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Inception Res Net V2 Customized Implementation of Inception Res Net V2 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
NAS Net Generalised Implementation of NAS Net 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
NAS Net Mobile Customized Implementation of NAS Net Mobile 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
NAS Net Large Customized Implementation of NAS Net Large 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
MobileNet Customized Implementation of MobileNet 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) usage 1 usage 2
Mobile Net V2 Customized Implementation of Mobile Net V2 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) usage 1 usage 2
Mobile Net V3 Customized Implementation of Mobile Net V3 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) usage 1 usage 2
Seg Net Generalised Implementation of SegNet for Image Segmentation Applications 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, rows, cols, channels) check here
U Net Generalised Implementation of UNet for Image Segmentation Applications 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, rows, cols, channels) check here

DenseNets

Module Description Input Shape Output Shape Usage
Densely Connected Network Network of Densely Connected Layers followed by Batch Normalization (optional) and Dropout (optional) 2D tensor with shape (batch_size, input_dim) 2D tensor with shape (batch_size, new_dim) check here
Densely Connected Resnet Network of skip connections for densely connected layer 2D tensor with shape (batch_size, input_dim) 2D tensor with shape (batch_size, new_dim) check here

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyradox-1.0.1.tar.gz (25.8 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page