Skip to main content
Join the official Python Developers Survey 2018 and win valuable prizes: Start the survey!

Experimental tools for parallel machine learning

Project description

# Pyrallel - Parallel Data Analytics in Python

Overview: experimental project to investigate distributed computation patterns for machine learning and other semi-interactive data analytics tasks.

Scope:

  • focus on small to medium dataset that fits in memory on a small (10+ nodes) to medium cluster (100+ nodes).
  • focus on small to medium data (with data locality when possible).
  • focus on CPU bound tasks (e.g. training Random Forests) while trying to limit disk / network access to a minimum.
  • do not focus on HA / Fault Tolerance (yet).
  • do not try to invent new set of high level programming abstractions (yet): use a low level programming model (IPython.parallel) to finely control the cluster elements and messages transfered and help identify what are the practical underlying constraints in distributed machine learning setting.

Disclaimer: the public API of this library will probably not be stable soon as the current goal of this project is to experiment.

## Dependencies

The usual suspects: Python 2.7, NumPy, SciPy.

Fetch the development version (master branch) from:

StarCluster develop branch and its IPCluster plugin is also required to easily startup a bunch of nodes with IPython.parallel setup.

## Patterns currently under investigation

  • Asynchronous & randomized hyper-parameters search (a.k.a. Randomized Grid Search) for machine learning models
  • Share numerical arrays efficiently over the nodes and make them available to concurrently running Python processes without making copies in memory using memory-mapped files.
  • Distributed Random Forests fitting.
  • Ensembling heterogeneous library models.
  • Parallel implementation of online averaged models using a MPI AllReduce, for instance using MiniBatchKMeans on partitioned data.

See the content of the examples/ folder for more details.

## License

Simplified BSD.

## History

This project started at the [PyCon 2012 PyData sprint](http://wiki.ipython.org/PyCon12Sprint) as a set of proof of concept [IPython.parallel scripts](https://github.com/ogrisel/pycon-pydata-sprint).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
pyrallel-0.2.1.tar.gz (7.9 kB) Copy SHA256 hash SHA256 Source None Jun 20, 2013

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page